Malaysian Journal of Analytical Sciences Vol 23 No 1 (2019): 71 - 79

DOI: 10.17576/mjas-2019-2301-09

 

 

 

PdAu BIMETALLIC CATALYST FOR ELECTROOXIDATION OF GLYCEROL USING CYCLIC VOLTAMMETRY ANALYSIS

 

 (PdAu Dwilogam Mangkin untuk Elektropengoksidaan Gliserol dengan Menggunakan Analisis Kitaran Voltametri)

 

Norilhamiah Yahya1 and Siti Kartom Kamaruddin2,3*

 

1Malaysian Institute of Chemical and Bioengineering Technology,

Universiti Kuala Lumpur, 78000 Alor Gajah, Melaka, Malaysia.

2Fuel Cell Institute

3Department of Chemical and Process Engineering

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.

 

*Corresponding author:  ctie@ukm.edu.my

 

 

Received: 13 April 2017; Accepted: 17 April 2018

 

 

Abstract

This study was conducted to examine the performance of Palladium (Pd) based catalyst for glycerol oxidation in alkaline media by using half-cell in a cyclic voltammetry study. The sonication assisted reduction method by sodium citrate and sodium borohydride was employed to prepare a bimetallic PdAu catalyst. The crystallinity data of bimetallic Pd2Au1 and Pd4Au1 catalysts were characterised by powder X-ray powder diffraction (XRD). Meanwhile, morphology, rough composition and distribution of metallic elements from both catalysts were investigated by Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-ray (EDX), respectively. The performances of the synthesised catalysts were analysed for the electrooxidation of glycerol in alkaline media by cyclic voltammetry analysis and chronoamperometry analysis. It was found that Pd2Au1 showed higher performance in terms of peak current density (55.28 mA cm-2), onset potential (-0.4152 V) and more stability towards glycerol oxidation compared to Pd4Au1. The cyclic voltammetry study yielded an electrochemically active surface area for Pd2Au1 catalyst at 14.12 m2g-1, compared to Pd4Au1 catalyst at only 12.7 m2g-1.

 

Keywords:  PdAu, nanocatalyst, alkaline medium, glycerol oxidation, cyclic voltammetry

 

Abstrak

Kajian ini adalah untuk mengkaji prestasi mangkin berasaskan Palladium (Pd) untuk pengoksidaan gliserol dalam media alkali dengan menggunakan sel separuh dalam kajian voltammetri berkitar. Kaedah sonikasi dibantu kaedah penurunan oleh natrium sitrat dan natrium borohidrat telah digunakan untuk menyediakan mangkin dwilogam PdAu. Data penghabluran mangkin dwilogam Pd2Au1 dan Pd4Au1 telah dicirikan oleh pembelauan sinar-X (XRD). Sementara itu, morfologi, komposisi kasar dan taburan unsur logam daripada mangkin telah disiasat menggunakan mikroskopi elektron imbasan (FESEM) dan spektrometer serakan tenaga sinar-X (EDX). Prestasi mangkin yang disintesis dianalisa untuk melihat tindakbalas elektropengoksidaan gliserol dalam media beralkali oleh ujian kitaran voltammetri dan ujian kronoamperometri. Telah didapati bahawa Pd2Au1 menunjukkan prestasi yang lebih tinggi dari segi ketumpatan arus puncak (55.28 mA cm-2), permulaan keupayaan potensi (-0.4152V) dan lebih kestabilan terhadap pengoksidaan gliserol dibandingkan dengan Pd4Au1. Kajian kitaran voltammetri menghasilkan kawasan permukaan elektrokimia aktif untuk mangkin Pd2Au1 sebanyak 14.12 m2g-1, di bandingkan dengan mangkin Pd4Au1 hanya sebanyak 12.7 m2g-1.

 

Kata kunci:  PdAu, nanomangkin, media alkali, pengoksidaan gliserol, kitaran voltammetri

 

References

1.       Kamarudin, M. Z. F., Kamarudin, S. K., Masdar, M. S. and Daud, W. R. W. (2013). Review: Direct ethanol fuel cells. International Journal of Hydrogen Energy,  38(22): 9438–9453.

2.       Zainoodin, A. M., Kamarudin, S. K., Masdar, M. S., Daud, W. R. W., Mohamad, A. B. and Sahari, J. (2014). High power direct methanol fuel cell with a porous carbon nanofiber anode layer. Applied Energy, 113: 946–954.

3.       Bambagioni, V.,  Bianchini, C., Marchionni, A., Filippi, J., Vizza, F., Teddy, J., Serp, P. and Zhiani, M. (2009). Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol). Journal of Power Sources, 190(2):241-251.

4.       Thiam, H. S., Daud, W. R. W., Kamarudin, S. K., Mohammad, A. B., Kadhum, A. A. H., Loh, K. S., and Majlan, E. H. (2011). Overview on nanostructured membrane in fuel cell applications. International Journal of Hydrogen Energy, 36(4):3187–3205.

5.       Basri, S., Kamarudin, S. K., Daud, W. R. W. and Yaakub, Z. (2010). Nanocatalyst for direct methanol fuel cell (DMFC). International Journal of Hydrogen Energy, 35(15): 7957–7970.

6.       Zhiani, M., Rostami, H., Majidi, S., and Karami, K. (2013). Bis (dibenzylidene acetone) palladium (0) catalyst for glycerol oxidation in half cell and in alkaline direct glycerol fuel cell. International Journal of  Hydrogen Energy, 38(13):5435–5441.

7.       Habibi, E. and Razmi, H. (2012). Glycerol electrooxidation on Pd, Pt and Au nanoparticles supported on carbon ceramic electrode in alkaline media. International Journal of Hydrogen Energy, 37(22): 16800–16809.

8.       Yang, F., Hanna, M. A. and Sun, R. (2014). Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnology for Biofuels, 5: 13.

9.       Li, S. S., Hu, Y. Y., Feng, J. J., Lv, Z. Y., Chen, J. R., and  Wang, A. J. (2014). Rapid room-temperature synthesis of Pd nanodendrites on reduced graphene oxide for catalytic oxidation of ethylene glycol and glycerol. International Journal of Hydrogen Energy, 39(8): 3730–3738.

10.    Bagheri, S., Julkapli, N. M. and Yehye, W. A. (2014). Catalytic conversion of biodiesel derived raw glycerol to value added products. Renewable and Sustainable Energy Reviews, 41: 113–127.

11.    Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M. and Della, Pina C. (2007). From glycerol to value-added products. Angewandte Chemie - International Edition, 46(24): 4434–4440.

12.    Liu, J. (2017). High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nature Communications, 8: 15938.

13.    Newton, M. A., Ferri, D., Smolentsev, G., Marchionni, V. and Nachtegaal, M. (2015). Room-temperature carbon monoxide oxidation by oxygen over Pt/Al2O3 mediated by reactive platinum carbonates. Nature Communications, 6: 1–7.

14.    Ruvinsky, P. S., Pronkin, S. N., Zaikovskii, V. I., Bernhardt, P. and Savinova, E. R. (2008). On the enhanced electrocatalytic activity of Pd overlayers on carbon-supported gold particles in hydrogen electrooxidation. Physical Chemistry Chemical Physics, 10(44): 6665–6676.

15.    Meng, H., Zeng, D. and Xie, F. (2015). Recent development of Pd-based electrocatalysts for proton exchange membrane fuel cells. Catalysts, 5(3): 1221–1274.

16.    Niu, Z. and Li, Y. (2014). Removal and utilization of capping agents in nanocatalysis. Chemistry of Materials, 26(1): 72–83.

17.    Qin, Y. H., Jia, Y. B., Jiang, Y., Niu, D. F., Zhang, X. S., Zhou, X. G., Niu, Li. and Yuan, W. K. (2012). Controllable synthesis of carbon nanofiber supported Pd catalyst for formic acid electrooxidation. International Journal of Hydrogen Energy, 37(9): 7373-7377.

18.    Marshall, A. T., Golovko, V. and Padayachee, D. (2015). Influence of gold nanoparticle loading in Au/C on the activity towards electrocatalytic glycerol oxidation. Electrochimica Acta, 153: 370–378.

19.    Yan, W., Tang, Z., Wang, L., Wang, Q., Yang, H. and Chen S. (2016). PdAu alloyed clusters supported by carbon nanosheets as efficient electrocatalysts for oxygen reduction. International Journal of Hydrogen Energy, 42(1): 218-227.

20.    Wang, W., Kang, Y., Yang, Y., Liu, Y., Chai, D. and Lei Z. (2015). PdSn alloy supported on phenanthroline-functionalized carbon as highly active electrocatalysts for glycerol oxidation. International Journal of Hydrogen Energy, 41(2): 1272–1280.

21.    Thottoli, A. K., Kaliani A. and Unni A. (2013). Effect of trisodium citrate concentration on the particle growth of ZnS nanoparticles. Journal of Nanostructure Chemistry, 3(1): 56.

22.    Chen Z., Wang, S., Lian, C., Liu, Y., Wang, D., and Chen, C. (2016). Nano PdAu bimetallic alloy as an effective catalyst for the Buchwald – Hartwig reaction. Asian Journal Communication, 351–355.

23.    Liang, Z. X., Zhao, T. S., Xu, J. B. and Zhu, L. D. (2009). Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochimica Acta, 54(8): 2203–2208.

24.    Simões, M., Baranton, S. and Coutanceau, C. (2010). Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration. Applied Catalysis B: Environmental, 93: 354–362.

25.    Mahapatra, S. S. and Datta, J. (2011). Characterization of Pt-Pd/C electrocatalyst for methanol oxidation in alkaline medium. International Journal of Electrochemistry, 2011: 1–16.

26.    Mao, H., Huang, T. and Yu A. (2016). Surface noble metal modified PdM/C (M ¼ Ru, Pt, Au) as anode catalysts for direct ethanol fuel cells. Journal of Alloy and Compound, 676: 390–396.

27.    Thi, B., Lam, X., Chiku, M., Higuchi, E. and Inoue H. (2015). Preparation of PdAg and PdAu nanoparticle-loaded carbon black catalysts and their electrocatalytic activity for the glycerol oxidation reaction in alkaline medium. Journal of Power Sources, 297: 149–157.

 




Previous                    Content                    Next