Malaysian
Journal of Analytical Sciences Vol 23 No 1 (2019): 71 - 79
DOI:
10.17576/mjas-2019-2301-09
PdAu BIMETALLIC CATALYST FOR ELECTROOXIDATION OF GLYCEROL
USING CYCLIC VOLTAMMETRY ANALYSIS
(PdAu Dwilogam Mangkin untuk Elektropengoksidaan Gliserol dengan
Menggunakan Analisis Kitaran Voltametri)
Norilhamiah Yahya1 and Siti Kartom
Kamaruddin2,3*
1Malaysian Institute of Chemical and Bioengineering
Technology,
Universiti Kuala
Lumpur, 78000 Alor Gajah, Melaka, Malaysia.
2Fuel Cell Institute
3Department of Chemical and Process Engineering
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
*Corresponding
author: ctie@ukm.edu.my
Received: 13
April 2017; Accepted: 17 April 2018
Abstract
This
study was conducted to examine the performance of Palladium (Pd) based catalyst
for glycerol oxidation in alkaline media by using half-cell in a cyclic
voltammetry study. The sonication assisted reduction method by sodium citrate
and sodium borohydride was employed to prepare a bimetallic PdAu catalyst. The
crystallinity data of bimetallic Pd2Au1 and Pd4Au1
catalysts were characterised by powder X-ray powder diffraction (XRD).
Meanwhile, morphology, rough composition and distribution of metallic elements
from both catalysts were investigated by Field Emission Scanning Electron
Microscope (FESEM) and Energy Dispersive X-ray (EDX), respectively. The
performances of the synthesised catalysts were analysed for the
electrooxidation of glycerol in alkaline media by cyclic voltammetry analysis
and chronoamperometry analysis. It was found that Pd2Au1
showed higher performance in terms of peak current density (55.28 mA cm-2),
onset potential (-0.4152 V) and more stability towards glycerol oxidation
compared to Pd4Au1. The cyclic voltammetry study yielded
an electrochemically active surface area for Pd2Au1
catalyst at 14.12 m2g-1, compared to Pd4Au1
catalyst at only 12.7 m2g-1.
Keywords: PdAu, nanocatalyst, alkaline medium, glycerol
oxidation, cyclic voltammetry
Abstrak
Kajian ini adalah untuk
mengkaji prestasi mangkin berasaskan Palladium (Pd) untuk pengoksidaan gliserol
dalam media alkali dengan menggunakan sel separuh dalam kajian voltammetri
berkitar. Kaedah sonikasi dibantu kaedah penurunan oleh natrium sitrat dan
natrium borohidrat telah digunakan untuk menyediakan mangkin dwilogam PdAu.
Data penghabluran mangkin dwilogam Pd2Au1 dan Pd4Au1
telah dicirikan oleh pembelauan sinar-X (XRD). Sementara itu, morfologi,
komposisi kasar dan taburan unsur logam daripada mangkin telah disiasat
menggunakan mikroskopi elektron imbasan (FESEM) dan spektrometer serakan tenaga
sinar-X (EDX). Prestasi mangkin yang disintesis dianalisa untuk melihat
tindakbalas elektropengoksidaan gliserol dalam media beralkali oleh ujian
kitaran voltammetri dan ujian kronoamperometri. Telah didapati bahawa Pd2Au1
menunjukkan prestasi yang lebih tinggi dari segi ketumpatan arus puncak (55.28
mA cm-2), permulaan keupayaan potensi (-0.4152V) dan lebih
kestabilan terhadap pengoksidaan gliserol dibandingkan dengan Pd4Au1.
Kajian kitaran voltammetri menghasilkan kawasan permukaan elektrokimia aktif
untuk mangkin Pd2Au1 sebanyak 14.12 m2g-1,
di bandingkan dengan mangkin Pd4Au1 hanya sebanyak 12.7 m2g-1.
Kata kunci: PdAu, nanomangkin, media alkali, pengoksidaan
gliserol, kitaran voltammetri
References
1.
Kamarudin,
M. Z. F., Kamarudin, S. K., Masdar, M. S. and Daud, W. R. W. (2013). Review:
Direct ethanol fuel cells. International
Journal of Hydrogen Energy, 38(22):
9438–9453.
2.
Zainoodin,
A. M., Kamarudin, S. K., Masdar, M. S., Daud, W. R. W., Mohamad, A. B. and
Sahari, J. (2014). High power direct methanol fuel cell with a porous carbon
nanofiber anode layer. Applied Energy,
113: 946–954.
3.
Bambagioni,
V., Bianchini, C., Marchionni, A.,
Filippi, J., Vizza, F., Teddy, J., Serp, P. and Zhiani, M. (2009). Pd and Pt-Ru
anode electrocatalysts supported on multi-walled carbon nanotubes and their use
in passive and active direct alcohol fuel cells with an anion-exchange membrane
(alcohol = methanol, ethanol, glycerol). Journal
of Power Sources, 190(2):241-251.
4.
Thiam,
H. S., Daud, W. R. W., Kamarudin, S. K., Mohammad, A. B., Kadhum, A. A. H.,
Loh, K. S., and Majlan, E. H. (2011). Overview on nanostructured membrane in
fuel cell applications. International
Journal of Hydrogen Energy, 36(4):3187–3205.
5.
Basri,
S., Kamarudin, S. K., Daud, W. R. W. and Yaakub, Z. (2010). Nanocatalyst for
direct methanol fuel cell (DMFC). International
Journal of Hydrogen Energy, 35(15): 7957–7970.
6.
Zhiani,
M., Rostami, H., Majidi, S., and Karami, K. (2013). Bis (dibenzylidene acetone)
palladium (0) catalyst for glycerol oxidation in half cell and in alkaline
direct glycerol fuel cell. International
Journal of Hydrogen Energy,
38(13):5435–5441.
7.
Habibi,
E. and Razmi, H. (2012). Glycerol electrooxidation on Pd, Pt and Au nanoparticles
supported on carbon ceramic electrode in alkaline media. International Journal of Hydrogen Energy, 37(22): 16800–16809.
8.
Yang,
F., Hanna, M. A. and Sun, R. (2014). Value-added uses for crude glycerol-a
byproduct of biodiesel production. Biotechnology
for Biofuels, 5: 13.
9.
Li,
S. S., Hu, Y. Y., Feng, J. J., Lv, Z. Y., Chen, J. R., and Wang, A. J. (2014). Rapid room-temperature
synthesis of Pd nanodendrites on reduced graphene oxide for catalytic oxidation
of ethylene glycol and glycerol. International
Journal of Hydrogen Energy, 39(8): 3730–3738.
10.
Bagheri,
S., Julkapli, N. M. and Yehye, W. A. (2014). Catalytic conversion of biodiesel
derived raw glycerol to value added products. Renewable and Sustainable Energy Reviews, 41: 113–127.
11.
Pagliaro,
M., Ciriminna, R., Kimura, H., Rossi, M. and Della, Pina C. (2007). From
glycerol to value-added products. Angewandte
Chemie - International Edition, 46(24): 4434–4440.
12.
Liu,
J. (2017). High performance platinum single atom electrocatalyst for oxygen
reduction reaction. Nature Communications,
8: 15938.
13.
Newton,
M. A., Ferri, D., Smolentsev, G., Marchionni, V. and Nachtegaal, M. (2015).
Room-temperature carbon monoxide oxidation by oxygen over Pt/Al2O3
mediated by reactive platinum carbonates. Nature
Communications, 6: 1–7.
14.
Ruvinsky,
P. S., Pronkin, S. N., Zaikovskii, V. I., Bernhardt, P. and Savinova, E. R.
(2008). On the enhanced electrocatalytic activity of Pd overlayers on
carbon-supported gold particles in hydrogen electrooxidation. Physical Chemistry Chemical Physics, 10(44):
6665–6676.
15.
Meng,
H., Zeng, D. and Xie, F. (2015). Recent development of Pd-based
electrocatalysts for proton exchange membrane fuel cells. Catalysts, 5(3): 1221–1274.
16.
Niu,
Z. and Li, Y. (2014). Removal and utilization of capping agents in
nanocatalysis. Chemistry of Materials,
26(1): 72–83.
17.
Qin,
Y. H., Jia, Y. B., Jiang, Y., Niu, D. F., Zhang, X. S., Zhou, X. G., Niu, Li.
and Yuan, W. K. (2012). Controllable synthesis of carbon nanofiber supported Pd
catalyst for formic acid electrooxidation. International
Journal of Hydrogen Energy, 37(9): 7373-7377.
18.
Marshall,
A. T., Golovko, V. and Padayachee, D. (2015). Influence of gold nanoparticle
loading in Au/C on the activity towards electrocatalytic glycerol oxidation. Electrochimica Acta, 153: 370–378.
19.
Yan,
W., Tang, Z., Wang, L., Wang, Q., Yang, H. and Chen S. (2016). PdAu alloyed
clusters supported by carbon nanosheets as efficient electrocatalysts for
oxygen reduction. International Journal
of Hydrogen Energy, 42(1): 218-227.
20.
Wang,
W., Kang, Y., Yang, Y., Liu, Y., Chai, D. and Lei Z. (2015). PdSn alloy
supported on phenanthroline-functionalized carbon as highly active
electrocatalysts for glycerol oxidation. International
Journal of Hydrogen Energy, 41(2): 1272–1280.
21.
Thottoli,
A. K., Kaliani A. and Unni A. (2013). Effect of trisodium citrate concentration
on the particle growth of ZnS nanoparticles. Journal of Nanostructure Chemistry, 3(1): 56.
22.
Chen
Z., Wang, S., Lian, C., Liu, Y., Wang, D., and Chen, C. (2016). Nano PdAu bimetallic
alloy as an effective catalyst for the Buchwald – Hartwig reaction. Asian Journal Communication, 351–355.
23.
Liang,
Z. X., Zhao, T. S., Xu, J. B. and Zhu, L. D. (2009). Mechanism study of the
ethanol oxidation reaction on palladium in alkaline media. Electrochimica Acta, 54(8): 2203–2208.
24.
Simões,
M., Baranton, S. and Coutanceau, C. (2010). Electro-oxidation of glycerol at Pd
based nano-catalysts for an application in alkaline fuel cells for chemicals
and energy cogeneration. Applied
Catalysis B: Environmental, 93: 354–362.
25.
Mahapatra,
S. S. and Datta, J. (2011). Characterization of Pt-Pd/C electrocatalyst for
methanol oxidation in alkaline medium. International
Journal of Electrochemistry, 2011: 1–16.
26.
Mao,
H., Huang, T. and Yu A. (2016). Surface noble metal modified PdM/C (M ¼ Ru, Pt,
Au) as anode catalysts for direct ethanol fuel cells. Journal of Alloy and Compound, 676: 390–396.
27.
Thi,
B., Lam, X., Chiku, M., Higuchi, E. and Inoue H. (2015). Preparation of PdAg
and PdAu nanoparticle-loaded carbon black catalysts and their electrocatalytic
activity for the glycerol oxidation reaction in alkaline medium. Journal of Power Sources, 297: 149–157.