Malaysian Journal of Analytical Sciences Vol 23 No 4 (2019): 561 - 571

DOI: 10.17576/mjas-2019-2304-01

 

 

 

FACILE ORGANIC-INORGANIC HYBRID SORBENTS FOR EXTRACTION OF POLLUTANTS FROM AQUEOUS SAMPLES – A REVIEW

 

(Pengerap Hibrid Organik-Tak Organik Mudah bagi Pengekstrakan Pencemar dari Sampel Akueus – Sebuah Ulasan)

 

Mohd Marsin Sanagi1,2*, Nyuk-Ting Ng1, Faridah Mohd Marsin1, Mohamad Raizul Zinalibdin1, Zetty Azalea Sutirman1, Aemi Syazwani Abdul Keyon1, Wan Aini Wan Ibrahim1,2

 

1Department of Chemistry, Faculty of Science

2Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research

Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

 

*Corresponding author:  marsin@kimia.fs.utm.my

 

 

Received: 19 August 2018; Accepted: 22 June 2019

 

 

Abstract

Rapid and efficiency extraction of pollutants from aqueous samples has been an important issue in analytical sciences. Solid phase extraction using sorbents is a well-known separation method and recognized as an efficient and economical method for removal of pollutants from water. In the past few years, there has been growing interest on extractions using organic-inorganic hybrid materials. Formed by incorporating inorganic species into organic matrix, these materials offer some advantages such as high selectivity, permeability, and mechanical and chemical stabilities. This present article discusses recent significant advances in analytical solid-phase extraction employing organic-inorganic composite and nanocomposite sorbents for the extraction of organic and inorganic pollutants from aqueous samples. Classifications and synthesis methods of organic-inorganic hybrid sorbents are described. The physicochemical characteristics, extraction properties and analytical performances of selected sorbents are discussed, including morphology and surface characteristics, types of functional groups, interaction mechanism, selectivity and sensitivity, accuracy, and regeneration abilities. Organic-inorganic hybrid sorbents in combination with extraction techniques are highly promising as an emerging research field for sample preparation of complex samples such as food, biomedical and environmental matrices with analytes at trace levels.

 

Keywords:  organic-inorganic hybrid sorbents, extraction methods, environmental pollutants, aqueous samples

 

Abstrak

Pengekstrakan pencemar dari sampel akueus dengan cepat dan cekap merupakan isu penting dalam sains analisis. Pengekstrakan fasa pepejal menggunakan pengerap adalah kaedah pemisahan yang diketahui ramai dan dikenali sebagai satu kaedah yang cekap dan ekonomi bagi penyingkiran pencemar dari air. Dalam beberapa tahun kebelakangan, minat terhadap pengekstrakan menggunakan bahan hibrid organik-tak organik telah berkembang. Terbentuk melalui gabungan spesis tak organik ke dalam matrik organik, bahan ini menawarkan beberapa kelebihan misalnya mempunyai kepilihan tinggi, kebolehtelapan, serta kestabilan mekanikal dan kimia. Artikel ulasan ini membincangkan kemajuan penting dalam analisis pengekstrakan fasa pepejal menggunakan pengerap komposit dan nanokomposit organik-tak organik bagi pengekstrakan pencemar organik dan tak organik dari sampel akueus. Klasifikasi dan kaedah sintesis pengerap hibrid organik-tak organik diterangkan. Pencirian fizikokimia, sifat pengekstrakan dan prestasi analisis pengerap terpilih dibincangkan, termasuk pencirian morfologi dan permukaan, jenis kumpulan berfungsi, mekanisma interaksi, pemilihan dan kepekaan, ketepatan dan kebolehan guna semula. Pengerap hibrid organik-tak organik digabung dengan teknik pengekstrakan merupakan bidang penyelidikan yang sangat menjanjikan bagi penyediaan sampel kompleks misalnya matrik makanan, bioperubatan dan alam sekitar dengan analit pada tahap surih.

 

Kata kunci:  pengerap hibrid organik-tak organik, kaedah pengekstrakan, pencemar alam sekitar, sampel akueus

 

References

1.       Halder, J. N. and Islam, M. N. (2015). Water pollution and its impact on the human health. Journal of Environment and Human, 2(1): 36-46.

2.       Khatun, R. (2017). Water pollution: Causes, consequences, prevention method and role of wbphed with special reference from Murshidabad district. International Journal of Scientific and Research Publications, 7(8): 269-277.

3.       Prüss-Üstün, A., Bonjour, S. and Corvalán, C. (2008). The impact of the environment on health by country: A meta-synthesis. Environmental Health, 7(1): 7.

4.       Ng, N. T., Kamaruddin, A. F., Wan Ibrahim, W. A., Sanagi, M. M. and Abdul Keyon, A. S. (2018). Advances in organic–inorganic hybrid sorbents for the extraction of organic and inorganic pollutants in different types of food and environmental samples. Journal of Separation Science, 41(1): 195-208.

5.       Xu, L. and Wang, J. (2017). The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater. Critical Reviews in Environmental Science and Technology, 47(12): 1042-1105.

6.       Zvonkina, I. and Soucek, M. (2016). Inorganic–organic hybrid coatings: Common and new approaches. Current Opinion in Chemical Engineering, 11: 123-127.

7.       Samiey, B., Cheng, C.-H. and Wu, J. (2014). Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: A review. Materials, 7(2): 673-726.

8.       Judeinstein, P. and Sanchez, C. (1996). Hybrid organic–inorganic materials: A land of multidisciplinarity. Journal of Materials Chemistry, 6(4): 511-525.

9.       Sanchez, C., Julián, B., Belleville, P. and Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36): 3559-3592.

10.    Kaushik, A., Kumar, R., Arya, S. K., Nair, M., Malhotra, B. and Bhansali, S. (2015). Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. Chemical Reviews, 115(11): 4571-4606.

11.    Mir, S. H., Nagahara, L. A., Thundat, T., Mokarian-Tabari, P., Furukawa, H. and Khosla, A. (2018). Organic-inorganic hybrid functional materials: An integrated platform for applied technologies. Journal of The Electrochemical Society, 165(8): B3137-B3156.

12.    Tavakoli, M., Hajimahmoodi, M. and Shemirani, F. (2014). Trace level monitoring of pesticides in water samples using fatty acid coated magnetic nanoparticles prior to GC-MS. Analytical Methods, 6 (9): 2988-2997.

13.    Casarin, J., Gonçalves, A. C., Segatelli, M. G. and Tarley, C. R. T. (2017). Poly(methacrylic acid)/SiO2/Al2O3 based organic-inorganic hybrid adsorbent for adsorption of imazethapyr herbicide from aqueous medium. Reactive and Functional Polymers, 121: 101-109.

14.    Nodeh, H. R., Ibrahim, W. A. W., Kamboh, M. A. and Sanagi, M. M. (2017). New magnetic graphene-based inorganic–organic sol-gel hybrid nanocomposite for simultaneous analysis of polar and non-polar organophosphorus pesticides from water samples using solid-phase extraction. Chemosphere, 166: 21-30.

15.    Ali, L. I. A., Ibrahim, W. A. W., Sulaiman, A., Kamboh, M. A. and Sanagi, M. M. (2016). New chrysin-functionalized silica-core shell magnetic nanoparticles for the magnetic solid phase extraction of copper ions from water samples. Talanta, 148: 191-199.

16.    Zhang, D., Zhao, Y. and Xu, H.-B. (2017). Hydrothermal-assisted derived ion-imprinted sorbent for preconcentration of antimony(III) in water samples. Separation Science and Technology, 52(12): 1938-1945.

17.    You, N., Liu, T.-H., Fan, H.-T. and Shen, H. (2018). An efficient mercapto-functionalized organic–inorganic hybrid sorbent for selective separation and preconcentration of antimony(III) in water samples. RSC Advances, 8(10): 5106-5113.

18.    Shamsayei, M., Yamini, Y. and Asiabi, H. (2018). Evaluation of reusable organic-inorganic nafion/layered double hydroxide nanohybrids for highly efficient uptake of mercury ions from aqueous solution. Applied Clay Science, 162: 534-542.

19.    Qi, X., Gao, S., Ding, G. and Tang, A.-N. (2017). Synthesis of surface Cr (VI)-imprinted magnetic nanoparticles for selective dispersive solid-phase extraction and determination of Cr(VI) in water samples. Talanta, 162: 345-353.

20.    Ahmad, N. F., Kamboh, M. A., Nodeh, H. R., Halim, S. N. B. A. and Mohamad, S. (2017). Synthesis of piperazine functionalized magnetic sporopollenin: a new organic-inorganic hybrid material for the removal of lead (II) and arsenic (III) from aqueous solution. Environmental Science and Pollution Research, 24(27): 21846-21858.

21.    Mohd Marsin, F., Wan Ibrahim, W. A., Abdul Keyon, A. S. and Sanagi, M. M. (2018). box–behnken experimental design for the synthesis of magnetite–polypyrrole composite for the magnetic solid phase extraction of non-steroidal anti-inflammatory drug residues. Analytical Letters, 51(14): 2221-2239.

22.    Wahib, S. M. A., Ibrahim, W. A. W., Sanagi, M. M., Kamboh, M. A. and Keyon, A. S. A. (2018). Magnetic sporopollenin-cyanopropyltriethoxysilane-dispersive micro-solid phase extraction coupled with high performance liquid chromatography for the determination of selected non-steroidal anti-inflammatory drugs in water samples. Journal of Chromatography A, 1532: 50-57.

23.    Fiscal-Ladino, J. A., Obando-Ceballos, M., Rosero-Moreano, M., Montaño, D. F., Cardona, W., Giraldo, L. F. and Richter, P. (2017). Ionic liquids intercalated in montmorillonite as the sorptive phase for the extraction of low-polarity organic compounds from water by rotating-disk sorptive extraction. Analytica Chimica Acta, 953: 23-31.

24.    Omastová, M. and Mičušík, M. (2012). Polypyrrole coating of inorganic and organic materials by chemical oxidative polymerisation. Chemical Papers, 66(5): 392-414.

25.    Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K. and Sutton, D. J. (2012). Heavy metal toxicity and the environment. Springer Basel, Basel: pp. 133-164.

26.    Fu, F. and Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3): 407-418.

 

 

 




Previous                    Content                    Next