Malaysian
Journal of Analytical Sciences Vol 23 No 4 (2019): 561 - 571
DOI:
10.17576/mjas-2019-2304-01
FACILE
ORGANIC-INORGANIC HYBRID SORBENTS FOR EXTRACTION OF POLLUTANTS FROM AQUEOUS
SAMPLES – A REVIEW
(Pengerap
Hibrid Organik-Tak Organik Mudah bagi Pengekstrakan Pencemar dari Sampel Akueus
– Sebuah Ulasan)
Mohd Marsin Sanagi1,2*,
Nyuk-Ting Ng1, Faridah Mohd Marsin1, Mohamad Raizul Zinalibdin1, Zetty Azalea Sutirman1,
Aemi Syazwani Abdul Keyon1, Wan Aini Wan Ibrahim1,2
1Department of Chemistry, Faculty of Science
2Centre for Sustainable Nanomaterials, Ibnu Sina Institute for
Scientific and Industrial Research
Universiti
Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
*Corresponding
author: marsin@kimia.fs.utm.my
Received: 19 August 2018; Accepted: 22 June 2019
Abstract
Rapid
and efficiency extraction of pollutants from aqueous samples has been an
important issue in analytical sciences. Solid phase extraction using sorbents
is a well-known separation method and recognized as an efficient and economical
method for removal of pollutants from water. In the past few years, there has
been growing interest on extractions using organic-inorganic hybrid materials.
Formed by incorporating inorganic species into organic matrix, these materials
offer some advantages such as high selectivity, permeability, and mechanical
and chemical stabilities. This present article discusses recent significant
advances in analytical solid-phase extraction employing organic-inorganic
composite and nanocomposite sorbents for the extraction of organic and
inorganic pollutants from aqueous samples. Classifications and synthesis
methods of organic-inorganic hybrid sorbents are described. The physicochemical
characteristics, extraction properties and analytical performances of selected
sorbents are discussed, including morphology and surface characteristics, types
of functional groups, interaction mechanism, selectivity and sensitivity,
accuracy, and regeneration abilities. Organic-inorganic hybrid sorbents in
combination with extraction techniques are highly promising as an emerging
research field for sample preparation of complex samples such as food,
biomedical and environmental matrices with analytes at trace levels.
Keywords: organic-inorganic hybrid sorbents, extraction
methods, environmental pollutants, aqueous samples
Abstrak
Pengekstrakan pencemar dari sampel akueus
dengan cepat dan cekap merupakan isu penting dalam sains analisis.
Pengekstrakan fasa pepejal menggunakan pengerap adalah kaedah pemisahan yang
diketahui ramai dan dikenali sebagai satu kaedah yang cekap dan ekonomi bagi
penyingkiran pencemar dari air. Dalam beberapa tahun kebelakangan, minat
terhadap pengekstrakan menggunakan bahan hibrid organik-tak organik telah
berkembang. Terbentuk melalui gabungan spesis tak organik ke dalam matrik
organik, bahan ini menawarkan beberapa kelebihan misalnya mempunyai kepilihan
tinggi, kebolehtelapan, serta kestabilan mekanikal dan kimia. Artikel ulasan
ini membincangkan kemajuan penting dalam analisis pengekstrakan fasa pepejal
menggunakan pengerap komposit dan nanokomposit organik-tak organik bagi
pengekstrakan pencemar organik dan tak organik dari sampel akueus. Klasifikasi
dan kaedah sintesis pengerap hibrid organik-tak organik diterangkan. Pencirian
fizikokimia, sifat pengekstrakan dan prestasi analisis pengerap terpilih
dibincangkan, termasuk pencirian morfologi dan permukaan, jenis kumpulan
berfungsi, mekanisma interaksi, pemilihan dan kepekaan, ketepatan dan kebolehan
guna semula. Pengerap hibrid organik-tak organik digabung dengan teknik pengekstrakan
merupakan bidang penyelidikan yang sangat menjanjikan bagi penyediaan sampel
kompleks misalnya matrik makanan, bioperubatan dan alam sekitar dengan analit
pada tahap surih.
Kata kunci: pengerap hibrid organik-tak organik, kaedah
pengekstrakan, pencemar alam sekitar, sampel akueus
References
1.
Halder, J. N.
and Islam, M. N. (2015). Water pollution and its impact on the human health. Journal of Environment and Human, 2(1):
36-46.
2. Khatun,
R. (2017). Water pollution: Causes, consequences, prevention method and role of
wbphed with special reference from Murshidabad district. International Journal of Scientific and Research Publications,
7(8): 269-277.
3. Prüss-Üstün,
A., Bonjour, S. and Corvalán, C. (2008). The impact of the environment on
health by country: A meta-synthesis. Environmental
Health, 7(1): 7.
4. Ng,
N. T., Kamaruddin, A. F., Wan Ibrahim, W. A., Sanagi, M. M. and Abdul Keyon, A.
S. (2018). Advances in organic–inorganic hybrid sorbents for the extraction of
organic and inorganic pollutants in different types of food and environmental
samples. Journal of Separation Science,
41(1): 195-208.
5. Xu,
L. and Wang, J. (2017). The application of graphene-based materials for the
removal of heavy metals and radionuclides from water and wastewater. Critical Reviews in Environmental Science
and Technology, 47(12): 1042-1105.
6. Zvonkina,
I. and Soucek, M. (2016). Inorganic–organic hybrid coatings: Common and new
approaches. Current Opinion in Chemical
Engineering, 11: 123-127.
7. Samiey,
B., Cheng, C.-H. and Wu, J. (2014). Organic-inorganic hybrid polymers as
adsorbents for removal of heavy metal ions from solutions: A review. Materials, 7(2): 673-726.
8. Judeinstein,
P. and Sanchez, C. (1996). Hybrid organic–inorganic materials: A land of
multidisciplinarity. Journal of Materials
Chemistry, 6(4): 511-525.
9. Sanchez,
C., Julián, B., Belleville, P. and Popall, M. (2005). Applications of hybrid
organic–inorganic nanocomposites. Journal
of Materials Chemistry, 15(35-36): 3559-3592.
10. Kaushik,
A., Kumar, R., Arya, S. K., Nair, M., Malhotra, B. and Bhansali, S. (2015).
Organic–inorganic hybrid nanocomposite-based gas sensors for environmental
monitoring. Chemical Reviews,
115(11): 4571-4606.
11. Mir,
S. H., Nagahara, L. A., Thundat, T., Mokarian-Tabari, P., Furukawa, H. and
Khosla, A. (2018). Organic-inorganic hybrid functional materials: An integrated
platform for applied technologies. Journal
of The Electrochemical Society, 165(8): B3137-B3156.
12. Tavakoli,
M., Hajimahmoodi, M. and Shemirani, F. (2014). Trace level monitoring of
pesticides in water samples using fatty acid coated magnetic nanoparticles
prior to GC-MS. Analytical Methods, 6
(9): 2988-2997.
13. Casarin,
J., Gonçalves, A. C., Segatelli, M. G. and Tarley, C. R. T. (2017).
Poly(methacrylic acid)/SiO2/Al2O3 based
organic-inorganic hybrid adsorbent for adsorption of imazethapyr herbicide from
aqueous medium. Reactive and Functional
Polymers, 121: 101-109.
14. Nodeh,
H. R., Ibrahim, W. A. W., Kamboh, M. A. and Sanagi, M. M. (2017). New magnetic
graphene-based inorganic–organic sol-gel hybrid nanocomposite for simultaneous
analysis of polar and non-polar organophosphorus pesticides from water samples
using solid-phase extraction. Chemosphere,
166: 21-30.
15. Ali,
L. I. A., Ibrahim, W. A. W., Sulaiman, A., Kamboh, M. A. and Sanagi, M. M.
(2016). New chrysin-functionalized silica-core shell magnetic nanoparticles for
the magnetic solid phase extraction of copper ions from water samples. Talanta, 148: 191-199.
16. Zhang,
D., Zhao, Y. and Xu, H.-B. (2017). Hydrothermal-assisted derived ion-imprinted
sorbent for preconcentration of antimony(III) in water samples. Separation Science and Technology,
52(12): 1938-1945.
17. You,
N., Liu, T.-H., Fan, H.-T. and Shen, H. (2018). An efficient mercapto-functionalized
organic–inorganic hybrid sorbent for selective separation and preconcentration
of antimony(III) in water samples. RSC
Advances, 8(10): 5106-5113.
18. Shamsayei,
M., Yamini, Y. and Asiabi, H. (2018). Evaluation of reusable organic-inorganic
nafion/layered double hydroxide nanohybrids for highly efficient uptake of
mercury ions from aqueous solution. Applied
Clay Science, 162: 534-542.
19. Qi,
X., Gao, S., Ding, G. and Tang, A.-N. (2017). Synthesis of surface Cr
(VI)-imprinted magnetic nanoparticles for selective dispersive solid-phase
extraction and determination of Cr(VI) in water samples. Talanta, 162: 345-353.
20. Ahmad,
N. F., Kamboh, M. A., Nodeh, H. R., Halim, S. N. B. A. and Mohamad, S. (2017).
Synthesis of piperazine functionalized magnetic sporopollenin: a new
organic-inorganic hybrid material for the removal of lead (II) and arsenic
(III) from aqueous solution. Environmental
Science and Pollution Research, 24(27): 21846-21858.
21. Mohd
Marsin, F., Wan Ibrahim, W. A., Abdul Keyon, A. S. and Sanagi, M. M. (2018).
box–behnken experimental design for the synthesis of magnetite–polypyrrole
composite for the magnetic solid phase extraction of non-steroidal
anti-inflammatory drug residues. Analytical
Letters, 51(14): 2221-2239.
22. Wahib,
S. M. A., Ibrahim, W. A. W., Sanagi, M. M., Kamboh, M. A. and Keyon, A. S. A.
(2018). Magnetic sporopollenin-cyanopropyltriethoxysilane-dispersive
micro-solid phase extraction coupled with high performance liquid
chromatography for the determination of selected non-steroidal
anti-inflammatory drugs in water samples. Journal
of Chromatography A, 1532: 50-57.
23. Fiscal-Ladino,
J. A., Obando-Ceballos, M., Rosero-Moreano, M., Montaño, D. F., Cardona, W.,
Giraldo, L. F. and Richter, P. (2017). Ionic liquids intercalated in montmorillonite
as the sorptive phase for the extraction of low-polarity organic compounds from
water by rotating-disk sorptive extraction. Analytica
Chimica Acta, 953: 23-31.
24. Omastová,
M. and Mičušík, M. (2012). Polypyrrole coating of inorganic and organic
materials by chemical oxidative polymerisation. Chemical Papers, 66(5): 392-414.
25. Tchounwou,
P. B., Yedjou, C. G., Patlolla, A. K. and Sutton, D. J. (2012). Heavy metal
toxicity and the environment. Springer Basel, Basel: pp. 133-164.
26. Fu,
F. and Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review.
Journal of Environmental Management,
92(3): 407-418.