Malaysian Journal of Analytical Sciences Vol 23 No 4 (2019): 667 - 676

DOI: 10.17576/mjas-2019-2304-13

 

 

 

UTILIZATION OF DEEP EUTECTIC SOLVENT (DES) AS POROGEN IN THE FABRICATION OF POLYMERIC MONOLITHIC CAPILLARY COLUMN

 

(Penggunaan Pelarut Eutektik Dalam (DES) Sebagai Porogen Dalam Fabrikasi Turus Kapilari Monolitik Polimerik)

 

Nabilah Suhaili1, Lee Wah Lim1*, Takeuchi Toyohide1, Rizafizah Othaman2

 

1Graduate School of Engineering, Faculty Engineering,

Gifu University, 1-1,Yanagido, Gifu-shi, 501-1193, Japan

2Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  lim@gifu-u.ac.jp

 

 

Received: 31 April 2018; Accepted: 17 April 2019

 

 

Abstract

Deep eutectic solvents (DESs) from quaternary salts and hydrogen bond donors (HBDs) formation are widely known as an alternative for ionic liquid (IL) and commonly introduced in the synthesis of mesoporous materials. In this study, four types of choline chloride (ChCl) based DESs were prepared, and their utilization as porogens in fabricating methacrylate-based monolithic capillary columns was investigated. The selected DESs were prepared from different HBDs, including from organic acid (methacrylic acid MAA), alcohol (ethylene glycol EG), organic base (urea), and also combination of alcohol and organic base (EG and urea). This study found that the type of HBDs used have a crucial impact on the pore formation, and the results showed that DES A (ChCl:urea:EG) could effectively improve the structure of the monoliths and enhanced chromatographic separation for non-polar polycyclic aromatic hydrocarbons (PAHs). For repeatability evaluation using DES A in separation analysis, five PAHs achieved relative standard deviations (RSDs) of retention time in the range of 1.39 – 1.91%. Due to the lowest backpressure value (0.4 MPa) compared to other types of DESs, DES A that contained both HBDs from organic base and alcohol is believed to inherit both feature characteristics such as formation of through-pore and mesopore skeletal in monoliths column. A novel green stationary phase for separation of PAHs compounds was successfully synthesized using simple one-step polymerization with low cost and toxicity of DESs mixture as porogenic solvents instead of using traditional organic solvents.

 

Keywords:  deep eutectic solvents, pore forming agent, monoliths, methacrylate, chromatography

 

Abstrak

Pelarut eutektik dalam (DESs) daripada pembentukan garam kuaternari dan penderma ikatan hidrogen (HBDs) dikenali secara meluas sebagai alternatif untuk cecair ionik dan biasanya diperkenalkan dalam pembuatan bahan mesoporos. Dalam kajian ini, empat jenis DESs berasaskan kolin klorida telah disediakan, dan penggunaannya sebagai porogen dalam fabrikasi turus kapilari monolit berasaskan metakrilat telah dikaji. DESs yang terpilih telah disediakan daripada HBDs yang berbeza, termasuklah daripada asid organik (asid metakrilik MAA), alkohol (etilena glikol EG), bes organik (urea) dan juga gabungan alkohol dan bes organik (EG dan urea). Kajian ini mendapati bahawa jenis HBDs yang digunakan memberikan impak penting ke atas pembentukkan liang dan hasil menunjukkan bahawa DES A (ChCl:urea:EG) boleh memperbaiki struktur monolit secara efektif dan memperbaiki pemisahan kromatografi hidrokarbon aromatik polisiklik (PAHs). Bagi ujian pengulangan menggunakan DES A dalam analisis pemisahan lima PAHs mencapai sisihan piawai relatif (RSDs) masa tahanan didalam lingkungan 1.39 – 1.91%. Disebabkan oleh nilai tekanan balik terendah (0.4 MPa) berbanding dengan jenis DESs lain, DES A yang mengandungi kedua-dua HBDs bes organik dan alkohol, dipercayai mewarisi kedua-dua ciri seperti pembentukan liang-liang dan rangka mesopor dalam turus monolit. Fasa pegun hijau yang baru untuk pemisahan sebatian PAHs berjaya disintesis menggunakan pempolimeran satu langkah mudah dengan kos dan ketoksikan yang rendah campuran DESs sebagai pelarut porogenik daripada menggunakan larutan organik tradisional.

 

Kata kunci:  pelarut eutektik dalam, agen pembentukan liang, monolit, metakrilat, kromatografi

 

References

1.       Anastas, P. T. (1998). Green Chemistry: Theory and practice, J. Warner (Eds.). Oxford University Press, New York.

2.       Khandelwal, S., Tailor, Y. K. and Kumar, M. (2016). Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/ catalyst systems in organic transformations. Journal of Molecular Liquids, 215: 345-386.

3.       Durand, E., Lecomte, J. and Villeneuve, P. (2013). Deep eutectic solvents: Synthesis, application, and focus on lipase-catalyzed reactions. European Journal of Lipid Science and Technology, 115: 379.

4.       Smith, E. L., Abbott, A. P. and Ryder, K. S. (2014). Deep eutectic solvents (DESs) and their applications. Chemical Reviews, 114: 11060-11082.

5.       Garcia, G., Aparicio, S., Ullah, R. and Atilhan, M. (2015). Deep eutectic solvents: Physicochemical properties and gas separation applications. Energy Fuel, 29(4): 2616-2644.

6.       Li, X., and Row, K. H. (2016). Development of deep eutectic solvents applied in extraction and separation. Journal of Separation Science, 39: 3505-3520.

7.       Tang, B., and Row, K. H. (2015). Exploration of deep eutectic solvent-based mesoporous silica spheres as high-performance size exclusion chromatography packing materials. Journal of Applied Polymer Science, 2015: 44203.

8.       Li, X., Lee, Y. R. and Row, K. H. (2016). Synthesis of mesoporous siliceous materials in choline chloride deep eutectic solvents and the application of these materials to high‑performance size exclusion chromatography. Chromatographia, 79: 375-382.

9.       Zhang, L. S., Zhao, Q. L., Li, X. X., Li, X. X., Huang, Y. P. and Liu, Z. S. (2016). Green synthesis of mesoporous molecular sieve incorporated monoliths using room temperature ionic liquid and deep eutectic solvents. Talanta, 161: 660-667.

10.    Zhang, J., Wu, T., Chen, S., Feng, P. and Bu, X. (2009). Versatile structure-directing roles of deep eutectic solvents and their implication in generating of porosity and open metal sites for gas storage. Angewandte Chemie International Edition in English, 48(19): 33486-3490.

11.    Diaz-Bao, M., Barreiro, R., Miranda, J. M., Cepeda, A. and Regal, P. (2015). Recent advances and uses of monolithic columns for the analysis of residues and contaminants in food. Chromatography, 2: 79-95.

12.    Tennikova, T. B., Belenkii, B. G. and Svec, F. (1990), High-performance membrane chromatography: A novel method of protein separation. Journal of Liquid Chromatography,13: 63-70.

13.    Linda, R., Lim, L. W., Takeuchi, T. (2013). Methacrylate-based diol monolithic stationary phase for the separation of polar and non-polar compounds in capillary liquid chromatography. Analytical Science, 29: 631-635.

14.    Groarke, R. J. and Brabazon, D. (2016). Methacrylate polymer monoliths for separation applications. Materials, 9(6): 446.

15.    Dittmann, M. M., Masuch, K. and Rozing, G. (2000). Separation of basic solutes by reversed-phase capillary electrochromatography. Journal of Chromatography, A, 887: 209.

16.    Sinioja, T. (2016). Development of a liquid chromatography method and fractionate EPA’s 16 priority polycyclic aromatic hydrocarbons (PAHs). Project in Chemistry. Orebro University.

17.    Wen, Y., and Feng, Y. Q. (2007). Preparation and evaluation of hydroxylated poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolithic capillary for in-tube solid-phase microextraction coupled to high-performance liquid chromatography. Journal of Chromatography A, 1160: 90-98.

18.    Liu, P., Hao, J. W., Mo, L. P., and Zhang, Z. H. (2015). Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Advances, 5(60): 48675-48704.

19.    Pearlman, R. S., Yalkowsky, S. H. and Banerjee, S. J. (1984). Water solubilities of polynuclear aromatic and heteroaromatic compounds. Journal of Physical and Chemical Reference Data, 13(2): 555-562.

20.    Aguilar, M. I. (2004). HPLC of peptides and proteins methods and protocols: Reversed-phase high performance liquid chromatography.  Springer: pp. 9-22.

 

 




Previous                    Content                    Next