Malaysian
Journal of Analytical Sciences Vol 23 No 4 (2019): 667 - 676
DOI:
10.17576/mjas-2019-2304-13
UTILIZATION
OF DEEP EUTECTIC SOLVENT (DES) AS POROGEN IN THE FABRICATION OF POLYMERIC MONOLITHIC CAPILLARY COLUMN
(Penggunaan Pelarut Eutektik Dalam (DES) Sebagai Porogen Dalam
Fabrikasi Turus Kapilari Monolitik Polimerik)
Nabilah Suhaili1,
Lee Wah Lim1*, Takeuchi Toyohide1, Rizafizah Othaman2
1Graduate School of Engineering, Faculty Engineering,
Gifu
University, 1-1,Yanagido, Gifu-shi, 501-1193, Japan
2Faculty of Science and Technology,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding
author: lim@gifu-u.ac.jp
Received: 31 April 2018; Accepted: 17 April 2019
Abstract
Deep
eutectic solvents (DESs) from quaternary salts and hydrogen bond donors (HBDs) formation
are widely known as an alternative for ionic liquid (IL) and commonly
introduced in the synthesis of mesoporous materials. In this study, four types
of choline chloride (ChCl) based DESs were prepared, and their utilization as
porogens in fabricating methacrylate-based monolithic capillary columns was
investigated. The selected DESs were prepared from different HBDs, including
from organic acid (methacrylic acid MAA), alcohol (ethylene glycol EG), organic
base (urea), and also combination of alcohol and organic base (EG and urea). This study found
that the type of HBDs used have a crucial impact on the pore formation, and the
results showed that DES A (ChCl:urea:EG) could effectively improve the structure
of the monoliths and enhanced chromatographic separation for non-polar
polycyclic aromatic hydrocarbons (PAHs). For repeatability evaluation using DES
A in separation analysis, five PAHs achieved relative standard deviations (RSDs)
of retention time in the range of 1.39 – 1.91%. Due to the
lowest backpressure value (0.4 MPa) compared to other types of DESs, DES A that contained both HBDs from organic base and
alcohol is believed to inherit both feature characteristics such as formation
of through-pore and mesopore skeletal in monoliths column. A novel green
stationary phase for separation of PAHs compounds was successfully synthesized
using simple one-step polymerization with low cost and toxicity of DESs mixture
as porogenic solvents instead of using traditional organic solvents.
Keywords: deep eutectic solvents, pore forming
agent, monoliths, methacrylate, chromatography
Abstrak
Pelarut
eutektik dalam (DESs) daripada pembentukan garam kuaternari dan penderma ikatan
hidrogen (HBDs) dikenali secara meluas sebagai alternatif untuk cecair ionik
dan biasanya diperkenalkan dalam pembuatan bahan mesoporos. Dalam kajian ini, empat
jenis DESs berasaskan kolin klorida telah disediakan, dan penggunaannya sebagai
porogen dalam fabrikasi turus kapilari monolit berasaskan metakrilat telah
dikaji. DESs yang terpilih telah disediakan daripada HBDs yang berbeza,
termasuklah daripada asid organik (asid metakrilik MAA), alkohol (etilena
glikol EG), bes organik (urea) dan juga gabungan alkohol dan bes organik (EG
dan urea). Kajian ini mendapati bahawa jenis HBDs yang digunakan memberikan
impak penting ke atas pembentukkan liang dan hasil menunjukkan bahawa DES A
(ChCl:urea:EG) boleh memperbaiki struktur monolit secara efektif dan memperbaiki
pemisahan kromatografi hidrokarbon aromatik polisiklik (PAHs). Bagi ujian
pengulangan menggunakan DES A dalam analisis pemisahan lima PAHs mencapai sisihan
piawai relatif (RSDs) masa tahanan didalam lingkungan 1.39 – 1.91%. Disebabkan
oleh nilai tekanan balik terendah (0.4 MPa) berbanding dengan jenis DESs lain, DES
A yang mengandungi kedua-dua HBDs bes organik dan alkohol, dipercayai mewarisi
kedua-dua ciri seperti pembentukan liang-liang dan rangka mesopor dalam turus
monolit. Fasa pegun hijau yang baru untuk pemisahan sebatian PAHs berjaya
disintesis menggunakan pempolimeran satu langkah mudah dengan kos dan
ketoksikan yang rendah campuran DESs sebagai pelarut porogenik daripada
menggunakan larutan organik tradisional.
Kata kunci: pelarut eutektik dalam, agen
pembentukan liang, monolit,
metakrilat, kromatografi
References
1. Anastas, P. T.
(1998). Green Chemistry: Theory and practice, J. Warner (Eds.). Oxford
University Press, New York.
2. Khandelwal, S.,
Tailor, Y. K. and Kumar, M. (2016). Deep eutectic solvents (DESs) as
eco-friendly and sustainable solvent/ catalyst systems in organic
transformations. Journal of Molecular
Liquids, 215: 345-386.
3. Durand, E.,
Lecomte, J. and Villeneuve, P. (2013). Deep eutectic solvents: Synthesis,
application, and focus on lipase-catalyzed reactions. European Journal of Lipid Science and Technology, 115: 379.
4.
Smith,
E. L., Abbott, A. P. and Ryder, K. S. (2014). Deep eutectic solvents (DESs) and
their applications. Chemical Reviews,
114: 11060-11082.
5. Garcia, G., Aparicio, S., Ullah, R. and Atilhan, M.
(2015). Deep eutectic solvents: Physicochemical properties and gas separation
applications. Energy Fuel, 29(4):
2616-2644.
6. Li, X., and Row, K. H. (2016). Development of deep
eutectic solvents applied in extraction and separation. Journal of Separation Science, 39: 3505-3520.
7.
Tang,
B., and Row, K. H. (2015). Exploration of deep eutectic solvent-based
mesoporous silica spheres as high-performance size exclusion chromatography
packing materials. Journal of Applied
Polymer Science, 2015: 44203.
8.
Li,
X., Lee, Y. R. and Row, K. H. (2016). Synthesis of
mesoporous siliceous materials in choline chloride deep eutectic solvents and
the application of these materials to high‑performance size exclusion chromatography.
Chromatographia, 79: 375-382.
9. Zhang, L. S., Zhao, Q. L., Li, X. X., Li, X. X.,
Huang, Y. P. and Liu, Z. S. (2016). Green synthesis of mesoporous molecular
sieve incorporated monoliths using room temperature ionic liquid and deep
eutectic solvents. Talanta, 161: 660-667.
10.
Zhang,
J., Wu, T., Chen, S., Feng, P. and Bu, X. (2009). Versatile structure-directing
roles of deep eutectic solvents and their implication in generating of porosity
and open metal sites for gas storage. Angewandte
Chemie International Edition in English, 48(19): 33486-3490.
11.
Diaz-Bao, M.,
Barreiro, R., Miranda, J. M., Cepeda, A. and Regal, P. (2015). Recent advances
and uses of monolithic columns for the analysis of residues and contaminants in
food. Chromatography, 2: 79-95.
12.
Tennikova, T.
B., Belenkii, B. G. and Svec, F. (1990), High-performance membrane
chromatography: A novel method of protein separation. Journal of Liquid Chromatography,13: 63-70.
13.
Linda, R., Lim,
L. W., Takeuchi, T. (2013). Methacrylate-based diol monolithic stationary phase
for the separation of polar and non-polar compounds in capillary liquid
chromatography. Analytical Science,
29: 631-635.
14.
Groarke,
R. J. and Brabazon, D. (2016). Methacrylate polymer monoliths for separation
applications. Materials, 9(6): 446.
15.
Dittmann, M. M.,
Masuch, K. and Rozing, G. (2000).
Separation of basic solutes by reversed-phase capillary electrochromatography. Journal of Chromatography, A, 887: 209.
16. Sinioja, T. (2016). Development of a liquid
chromatography method and fractionate EPA’s 16 priority polycyclic aromatic
hydrocarbons (PAHs). Project in Chemistry. Orebro University.
17. Wen, Y., and
Feng, Y. Q. (2007). Preparation and evaluation of hydroxylated poly(glycidyl
methacrylate-co-ethylene dimethacrylate) monolithic capillary for in-tube
solid-phase microextraction coupled to high-performance liquid chromatography. Journal of Chromatography A, 1160: 90-98.
18.
Liu,
P., Hao, J. W., Mo, L. P., and Zhang, Z. H. (2015). Recent advances in the
application of deep eutectic solvents as sustainable media as well as catalysts
in organic reactions. RSC Advances,
5(60): 48675-48704.
19. Pearlman, R. S., Yalkowsky, S. H. and Banerjee, S. J. (1984). Water solubilities of
polynuclear aromatic and heteroaromatic compounds. Journal of Physical and Chemical Reference Data, 13(2): 555-562.
20. Aguilar, M. I.
(2004). HPLC of peptides and proteins methods and protocols: Reversed-phase
high performance liquid chromatography. Springer:
pp. 9-22.