Malaysian
Journal of Analytical Sciences Vol 23 No 4 (2019): 660 - 666
DOI:
10.17576/mjas-2019-2304-12
RARE EARTH METAL DOPED CaO AS CATALYST FOR THE
TRANSESTERIFICATION REACTION OF COOKING OIL
(Logam Nadir Bumi Dop CaO sebagai Mangkin untuk Tindak
Balas Transesterifikasi Minyak Masak)
Wan Nur Aini Wan Mokhtar*, Mohd Rushashraaf Ramli, Muhammad ‘Azim Jamaluddin, Suria Ramli
Centre
for Advanced Materials and Renewable Resources, Faculty of Science and
Technology,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding
author: wannurainiwm@ukm.edu.my
Received: 31 March 2018; Accepted: 17 April 2019
Abstract
Biodiesel
has been introduced as an alternative fuel to replace the depletion of diesel
oil and environmental pollution. Thus, the production of biodiesel is in demand
and usually, conducted through base catalysed transesterification reaction
towards the low grade cooking oil. In this research, bimetallic oxide
cerium-calcium catalyst supported on activated carbon (AC) was prepared using
impregnation method. Optimum catalytic parameter was observed with 30 wt.% of cerium
loading on Ce/Ca/AC catalyst calcined at 500 °C and gave the highest free acid
methyl ester (FAME) yield of 73.5% with fixed reaction
conditions (65
°C, 1:18
wt.% oil to methanol ratio, 6 wt.% catalyst loading and 3 hours of reaction time). The
enhanced activity of Ce/Ca/AC catalyst can be ascribed to the uniform
needle-like morphology and well dispersion of the Ce-Ca on the support surface
as indicated by FESEM images. XRD showed that the Ce/Ca/AC catalyst was in
amorphous phase with BET surface area of 149.18 m2/g. These results
showed Ce/Ca/AC catalyst has promising potential to be used for production of
FAME from low grade cooking oil.
Keywords: bimetallic oxide, Ce-Ca catalyst,
cooking oil, transesterification, biodiesel
Abstrak
Biodiesel telah
diperkenalkan sebagai bahan api alternatif bagi menggantikan pengurangan minyak
diesel dan juga pencemaran alam sekitar. Oleh itu keperluan terhadap penggunaan
biodiesel semakin meningkat, dan kebanyakan proses penghasilan biodiesel
dilakukan melalui tindak balas transesterifikasi beralkali ke atas minyak masak
bergred rendah. Melalui kajian ini, mangkin oksida dwilogam serium-kalsium
berpenyokong karbon teraktif (AC) disediakan menggunakan kaedah pengisitepuan
basah. Parameter optimum bagi mangkin dapat dilihat dengan kehadiran 30 wt.%
kandungan serium dalam mangkin Ce/Ca/AC yang dikalsinkan pada suhu 500 °C, dan
menghasilkan kadar penukaran asid bebas metil ester (FAME) sebanyak 73.5%
dengan keadaan tindak balas tetap (65 °C, 1:18 wt.% nisbah minyak kepada
metanol, 6 wt.% kuantiti mangkin dalam tempoh 3 jam tindak balas). Peningkatan aktiviti
transesterifikasi adalah disebabkan oleh morfologi mangkin Ce-Ca yang berbentuk
sepeti jarum dan sekata pada permukaan penyokong seperti yang ditunjukkan oleh
imej FESEM. XRD pula menunjukkan bahawa mangkin Ce/Ca/AC berada di dalam fasa
amorfus dengan luas permukaan BET sebanyak 149.18 m2/g. Ini
menunjukkan, mangkin Ce/Ca/AC adalah berpotensi untuk digunakan dalam
pengeluaran FAME dari minyak masak bergred rendah.
Kata kunci: oksida dwilogam, mangkin Ce-Ca, minyak masak,
transesterifikasi, biodiesel
References
1.
Cai, Z. Z., Wang,
Y., Teng, Y. L., Chong, K. M., Wang, J. W., Zhang, J. W. and Yang, D. P. (2015).
A two-step biodiesel production process from waste cooking oil via recycling
crude glycerol esterification catalyzed by alkali catalyst. Fuel Processing Technology, 137: 186-193.
2.
Ezebor, F., Khairuddean,
M., Abdullah, A. Z. and Boey, P. L. (2014). Esterification of oily-FFA and transesterification
of high FFA waste oils using novel palm trunk and baggase-derived catalysts. Energy Conversion and Management, 88: 1143-1150.
3.
Marinković,
D. M., Stanković, M. V., Veličković, A. V., Avramović, J. M., Miladinović, M.
R., Stamenković, O. O. and Jovanović, D. M. (2016). Calcium oxide as a
promising heterogeneous catalyst for biodiesel production: Current state and
perspectives. Renewable and Sustainable Energy Reviews, 56: 1387-1408.
4.
Bankovic-Ilic, I.,
Miladinovic, M., Stamenkovic, O. and Veljkovic, V. (2017). Application of nano
CaO-based catalysts in biodiesel synthesis. Renewable & Sustainable
Energy Reviews, 72:
746-760.
5.
Kesic, Z., Lukic,
I., Zdujic, M., Mojovic, L. and Skala, D. (2016). Calcium oxide based catalysts
for biodiesel production: A review. Chemical Industry & Chemical
Engineering, 22(4): 391-408.
6.
Kwong,
T. L. and Yung, K. F. (2015). Heterogeneous alkaline earth metal–transition
metal bimetallic catalysts for synthesis of biodiesel from low grade unrefined
feedstock. RSC Advances, 5(102):
83748-83756.
7.
Macala, G. S., Robertson, A. W., Johnson, C. L., Day, Z. B.,
Lewis, R. S., White, M. G. and Ford, P. C. (2008). Transesterification catalysts
from iron doped hydrotalcite-like precursors: Solid bases for biodiesel
production. Catalysis Letters, 122(3-4): 205-209.
8.
Ullah, F., Dong, L., Bano, A., Peng, Q. and Huang, J. (2016).
Current advances in catalysis toward sustainable biodiesel production. Journal
of the Energy Institute, 89(2): 282-292.
9.
Maneerung, T., Kawi, S., Dai, Y. and Wang, C.H. (2016).
Sustainable biodiesel production via transesterification of waste cooking oil
by using cao catalysts prepared from chicken manure. Energy Conversion and
Management, 123: 487-497.
10.
Marinković, D. M., Avramović, J. M., Stanković, M. V.,
Stamenković, O. S., Jovanović, D. M. and Veljković, V. B. (2017). Synthesis and
characterization of spherically-shaped Cao/Γ-Al2O3 catalyst
and its application in biodiesel production. Energy Conversion and
Management, 144: 399-413.
11.
Abeti, M., Wan Daud, W. M. A. and Aroua, M. K. (2009).
Activity of solid catalysts for biodiesel production: A review. Fuel
Processing Technology, 90(6): 770-777.
12.
Warintorn T., Thawatchai
M. and Sibudjing K., (2015). Highly active and durable Ca-doped Ce-SBA-15 catalyst
for biodiesel production. Energy, 89:
946-956.
13.
Abdullah, W. N. W.,
Azelee, W. A. W. A., Ali, R., Mokhtar, W. N. A. W. and Omar, M. F. (2017).
Catalytic oxidative desulfurization technology of supported ceria based
catalyst: Physicochemical and mechanistic studies. Journal of Cleaner Production, 162: 1455-1464.
14.
Kamal, N. M., Bakar,
W.A.W.A. and Ali, R. (2017). Catalytic optimization and physicochemical studies
over Zn/Ca/Al2O3 catalyst for transesterification of low
grade cooking oil. Energy Conversion and
Management, 137: 113-120.
15.
Rosid, S. J. M., Bakar, W. A. W. A. and Ali, R. (2015).
Physicochemical study of supported cobalt–lanthanum oxide-based catalysts for Co2/H2
methanation reaction. Clean Technologies and Environmental Policy, 17(1): 257-264.
16.
Wang, L. and Yang, J. (2007). Transesterification of soybean
oil with Nano-MgO or not in supercritical and subcritical methanol. Fuel, 86: 328-333.