Malaysian Journal of Analytical Sciences Vol 23 No 4 (2019): 660 - 666

DOI: 10.17576/mjas-2019-2304-12

 

 

 

RARE EARTH METAL DOPED CaO AS CATALYST FOR THE TRANSESTERIFICATION REACTION OF COOKING OIL

 

(Logam Nadir Bumi Dop CaO sebagai Mangkin untuk Tindak Balas Transesterifikasi Minyak Masak)

 

Wan Nur Aini Wan Mokhtar*, Mohd Rushashraaf Ramli, Muhammad ‘Azim Jamaluddin, Suria Ramli

 

Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author:  wannurainiwm@ukm.edu.my

 

 

Received: 31 March 2018; Accepted: 17 April 2019

 

 

Abstract

Biodiesel has been introduced as an alternative fuel to replace the depletion of diesel oil and environmental pollution. Thus, the production of biodiesel is in demand and usually, conducted through base catalysed transesterification reaction towards the low grade cooking oil. In this research, bimetallic oxide cerium-calcium catalyst supported on activated carbon (AC) was prepared using impregnation method. Optimum catalytic parameter was observed with 30 wt.% of cerium loading on Ce/Ca/AC catalyst calcined at 500 °C and gave the highest free acid methyl ester (FAME) yield of 73.5% with fixed reaction conditions (65 °C, 1:18 wt.% oil to methanol ratio, 6 wt.% catalyst loading and 3 hours of reaction time). The enhanced activity of Ce/Ca/AC catalyst can be ascribed to the uniform needle-like morphology and well dispersion of the Ce-Ca on the support surface as indicated by FESEM images. XRD showed that the Ce/Ca/AC catalyst was in amorphous phase with BET surface area of 149.18 m2/g. These results showed Ce/Ca/AC catalyst has promising potential to be used for production of FAME from low grade cooking oil.

 

Keywords:  bimetallic oxide, Ce-Ca catalyst, cooking oil, transesterification, biodiesel

 

Abstrak

Biodiesel telah diperkenalkan sebagai bahan api alternatif bagi menggantikan pengurangan minyak diesel dan juga pencemaran alam sekitar. Oleh itu keperluan terhadap penggunaan biodiesel semakin meningkat, dan kebanyakan proses penghasilan biodiesel dilakukan melalui tindak balas transesterifikasi beralkali ke atas minyak masak bergred rendah. Melalui kajian ini, mangkin oksida dwilogam serium-kalsium berpenyokong karbon teraktif (AC) disediakan menggunakan kaedah pengisitepuan basah. Parameter optimum bagi mangkin dapat dilihat dengan kehadiran 30 wt.% kandungan serium dalam mangkin Ce/Ca/AC yang dikalsinkan pada suhu 500 °C, dan menghasilkan kadar penukaran asid bebas metil ester (FAME) sebanyak 73.5% dengan keadaan tindak balas tetap (65 °C, 1:18 wt.% nisbah minyak kepada metanol, 6 wt.% kuantiti mangkin dalam tempoh 3 jam tindak balas). Peningkatan aktiviti transesterifikasi adalah disebabkan oleh morfologi mangkin Ce-Ca yang berbentuk sepeti jarum dan sekata pada permukaan penyokong seperti yang ditunjukkan oleh imej FESEM. XRD pula menunjukkan bahawa mangkin Ce/Ca/AC berada di dalam fasa amorfus dengan luas permukaan BET sebanyak 149.18 m2/g. Ini menunjukkan, mangkin Ce/Ca/AC adalah berpotensi untuk digunakan dalam pengeluaran FAME dari minyak masak bergred rendah.

 

Kata kunci:  oksida dwilogam, mangkin Ce-Ca, minyak masak, transesterifikasi, biodiesel

 

References

1.       Cai, Z. Z., Wang, Y., Teng, Y. L., Chong, K. M., Wang, J. W., Zhang, J. W. and Yang, D. P. (2015). A two-step biodiesel production process from waste cooking oil via recycling crude glycerol esterification catalyzed by alkali catalyst. Fuel Processing Technology, 137: 186-193.

2.       Ezebor, F., Khairuddean, M., Abdullah, A. Z. and Boey, P. L. (2014). Esterification of oily-FFA and transesterification of high FFA waste oils using novel palm trunk and baggase-derived catalysts. Energy Conversion and Management, 88: 1143-1150.

3.       Marinković, D. M., Stanković, M. V., Veličković, A. V., Avramović, J. M., Miladinović, M. R., Stamenković, O. O. and Jovanović, D. M. (2016). Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives. Renewable and Sustainable Energy Reviews, 56: 1387-1408.

4.       Bankovic-Ilic, I., Miladinovic, M., Stamenkovic, O. and Veljkovic, V. (2017). Application of nano CaO-based catalysts in biodiesel synthesis. Renewable & Sustainable Energy Reviews, 72: 746-760.

5.       Kesic, Z., Lukic, I., Zdujic, M., Mojovic, L. and Skala, D. (2016). Calcium oxide based catalysts for biodiesel production: A review. Chemical Industry & Chemical Engineering, 22(4): 391-408.

6.       Kwong, T. L. and Yung, K. F. (2015). Heterogeneous alkaline earth metal–transition metal bimetallic catalysts for synthesis of biodiesel from low grade unrefined feedstock. RSC Advances, 5(102): 83748-83756.

7.       Macala, G. S., Robertson, A. W., Johnson, C. L., Day, Z. B., Lewis, R. S., White, M. G. and Ford, P. C. (2008). Transesterification catalysts from iron doped hydrotalcite-like precursors: Solid bases for biodiesel production. Catalysis Letters122(3-4): 205-209.

8.       Ullah, F., Dong, L., Bano, A., Peng, Q. and Huang, J. (2016). Current advances in catalysis toward sustainable biodiesel production. Journal of the Energy Institute, 89(2): 282-292.

9.       Maneerung, T., Kawi, S., Dai, Y. and Wang, C.H. (2016). Sustainable biodiesel production via transesterification of waste cooking oil by using cao catalysts prepared from chicken manure. Energy Conversion and Management, 123: 487-497.

10.    Marinković, D. M., Avramović, J. M., Stanković, M. V., Stamenković, O. S., Jovanović, D. M. and Veljković, V. B. (2017). Synthesis and characterization of spherically-shaped Cao/Γ-Al2O3 catalyst and its application in biodiesel production. Energy Conversion and Management, 144: 399-413.

11.    Abeti, M., Wan Daud, W. M. A. and Aroua, M. K. (2009). Activity of solid catalysts for biodiesel production: A review. Fuel Processing Technology, 90(6): 770-777.

12.    Warintorn T., Thawatchai M. and Sibudjing K., (2015). Highly active and durable Ca-doped Ce-SBA-15 catalyst for biodiesel production. Energy, 89: 946-956.

13.    Abdullah, W. N. W., Azelee, W. A. W. A., Ali, R., Mokhtar, W. N. A. W. and Omar, M. F. (2017). Catalytic oxidative desulfurization technology of supported ceria based catalyst: Physicochemical and mechanistic studies. Journal of Cleaner Production, 162: 1455-1464.

14.    Kamal, N. M., Bakar, W.A.W.A. and Ali, R. (2017). Catalytic optimization and physicochemical studies over Zn/Ca/Al2O3 catalyst for transesterification of low grade cooking oil. Energy Conversion and Management, 137: 113-120.

15.    Rosid, S. J. M., Bakar, W. A. W. A. and Ali, R. (2015). Physicochemical study of supported cobalt–lanthanum oxide-based catalysts for Co2/H2 methanation reaction. Clean Technologies and Environmental Policy, 17(1): 257-264.

16.    Wang, L. and Yang, J. (2007). Transesterification of soybean oil with Nano-MgO or not in supercritical and subcritical methanol. Fuel, 86: 328-333.

 

 




Previous                    Content                    Next