Malaysian
Journal of Analytical Sciences Vol 23 No 4 (2019): 682 - 689
DOI:
10.17576/mjas-2019-2304-15
PRELIMINARY
INVESTIGATION OF LOW CURRENT FLASH SINTERING IN ZIRCONIA NANOPARTICLE COMPACT
(Kajian Awal Persinteran Kilat Arus Rendah dalam Nanopartikal
Zirkonia Kompak)
Michiyuki Yoshida1*,
Mitsuki Hada1, Yutaka Shinoda2, Osamu Sakurada1,
Fumihiro Wakai2
1Department
of Chemistry and Biomolecular Science,
Gifu
University, 1-1 Yanagido, Gifu-city 501-1193, Japan
2Laboratory for Materials and Structures,
Tokyo
Institute of Technology, 4259 Nagatsuta Midori-ku Yokohama-city,226-8503, Japan
*Corresponding
author: myoshida@gifu-u.ac.jp
Received: 31 March 2018; Accepted: 17 April 2019
Abstract
Flash sintering is a newly developed
technique to quickly densify conductive ceramics in the presence of an electric
field. At a critical combination of
field and temperature, densification takes place in a few seconds. In this paper, the feasibility of the
densification in flash sintering with low current was investigated in the newly
developed compact consisted of zirconia nanoparticles. Homogeneous
microstructure with densely packing of nano-particles was successfully obtained
by gel-casting of nano-suspension. The grain size and relative density of the
sample flash sintered at 30 mA/mm2 were 40.9 nm and 86.8%,
respectively. The sample densified with limited grain growth in low current
flash sintering. Although the full densification was not achieved in the
present study, the effectiveness of the nanoparticle compact to reduce the
current for the densification during flash sintering was shown by comparing the
results reported in flash sintering with the coarser microstructure.
Keywords:
zirconia, flash
sintering, gel-casting
Abstrak
Pensinteran
kilat merupakan satu teknik yang baru dibangunkan untuk mempercepatkan
pemampatan seramik konduktif dalam kehadiran medan elektrik. Pada kombinasi
kritikal antara medan dan suhu, densifikasi berlaku dalam beberapa saat. Dalam
manuskrip ini, keberhasilan densifikasi dalam pensinteran kilat pada arus
rendah telah dikaji dalam kompak yang baru dibangunkan terdiri daripada zirkonia
nanopartikel. Struktur mikro homogen dengan pengisian padat partikel nano telah
berjaya dihasilkan menggunakan acuan gel ampaian nano. Saiz butir dan
ketumpatan relatif sampel bersinter pada 30 mA/mm2 masing-masing
adalah 40.9 nm dan 86.8%. Sampel telah dimampatkan dengan pertumbuhan butiran
yang terhad di dalam arus pensinteran kilat yang rendah. Walaupun pemampatan
penuh tidak dapat dicapai di dalam kajian ini, namun keberkesanan kompak
nanopartikel untuk merendahkan aliran arus pemampatan ketika pensinteran kilat
telah dapat dilihat dengan membandingkan
hasil laporan pensinteran kilat ketika struktur mikro yang lebih besar
dijalankan.
Kata kunci: zirkonia, pensinteran kilat, acuan gel
References
1.
Cologna,
M., Rashkova, B. and Raj, R. (2010). Flash Sintering of Nanograin Zirconia in
< 5 s at 850°C. Journal of American
Ceramic Society, 93(11): 3556-3559.
2.
Prette,
A. L. G., Cologna, M., Sglavo, V. and Raj, R. (2011). Flash-sintering of Co2MnO4
spinel for solid oxide fuel cell applications. Journal of Power Sources, 196(4): 2061-2065.
3.
Gaur,
A. and Sglavo, V. M. (2014). Densification of La0.6Sr0.4Co0.2Fe0.8O3
ceramic by flash sintering at temperature less than 100 °C. Journal of Material Sciences, 49(18):
6321-6332.
4.
Karakuscu,
A., Cologna, M., Yarotski, D., Won, J., Francis, J. S. C., Raj, R. and
Uberuaga, B. P. (2012). Defect structure of flash-sintered strontium titanate. Journal of American Ceramic Society, 95(8):
2531-2536.
5.
Cologna,
M., Francis, J. S. C. and Raj, R. (2011). Field assisted and flash sintering of
alumina and its relationship to conductivity and MgO-doping. Journal of European Ceramic Society, 31(15):
2827-2837.
6.
Muccillo,
R. and Muccillo, E. N. S. (2014). Electric field-assisted flash sintering of
tin dioxide. Journal of European Ceramic
Society, 34(4): 915-923.
7.
Zapata-Solvas,
E., Bonilla, S., Wilshaw, P. R. and Todd, R. I. (2013). Preliminary
investigation of flash sintering of SiC. Journal
of European Ceramic Society, 33(13-14): 2811-2816.
8.
Candelario,
V. M., Moreno, R., Todd, R. I. and Ortiz, A. L. (2017). Liquid-phase assisted
flash sintering of SiC from powder mixtures prepared by aqueous colloidal
processing. Journal of European Ceramic
Society, 37(2): 485-498.
9.
Yoshida,
H., Sakka, Y., Yamamoto, T., Lebrun, J. M. and Raj, R. (2014). Densification
behaviour and microstructural development in undoped yttria prepared by
flash-sintering. Journal of European
Ceramic Society, 34(4): 991-1000.
10.
Todd, R. I., Zapata-Solvas, E., Bonilla,
R. S., Sneddon, T. and Wilshaw, P. R. (2015). Electrical characteristics of
flash sintering: thermal runaway of Joule heating. Journal
of European Ceramic Society, 35(6): 1865-1877.
11.
Yoshida, M. Takeno, S. and Sakurada, O. (2016). Fabrication
of translucent tetragonal zirconia by gelcasting of thin zirconia nano-slurry. Journal of Ceramic Society of Japan, 124(5):
500-505.
12.
Francis, J. S. C. and Raj, R. (2013). Influence
of the field and the current limit on flash sintering at isothermal furnace
temperatures. Journal of American Ceramic
Society, 96(9): 2754-2758.
13.
Yoshida, M., Falco, S. and Todd. R. I.
(2018). Measurement and modelling of electrical resistivity by four-terminal
method during flash sintering of 3YSZ. Journal
of Ceramic Society of Japan, 126(7): 579-590.
14.
Raj, R. (2012). Joule heating during
flash-sintering. Journal of European
Ceramic Society,
32(10): 2293-2301.
15.
Tanaka, H. Sawai, S., Morimoto, K. and
Hisano, K. (2001). Measurement of spectral emissivity and thermal conductivity
of zirconia by thermal radiation calorimetry. Journal of Thermal Analytical Calorimetry, 64(3): 867-72.
16.
Mazaheri, C., Valefi, M., Hesabi, Z.
R. and Sadrnezhaad, S. K. (2009). Two-step sintering of nanocrystalline 8Y2O3
stabilized ZrO2 synthesized by glycine nitrate process. Ceramics International, 35(1): 13-20.
17.
Raj, R., Cologna, M., Francis, J. S. C.
(2011). Influence of externally imposed and internally generated electrical
fields on grain growth, diffusional creep, sintering and related phenomena in ceramics.
Journal of American Ceramic Society,
94(7): 1941-1965.
18.
Naik, K. S., Sglavo, V. M. and Raj, R.
(2014). Flash sintering as a nucleation phenomenon and a model thereof. Journal of European Ceramic Society, 34(15): 4063-4067.
19.
Zhang, Y. Y., Jung, J. I. and Luo, J.
(2015). Thermal runaway, flash sintering and asymmetrical microstructural development
of ZnO and ZnO–Bi2O3 under direct currents. Acta Materialia, 94: 87-100.
20.
Bichaud, E., Chaix, J. M., Carry, C., Kleitz,
M. and Steil, M. C. (2015). Flash sintering incubation in Al2O3/TZP
composites. Journal of European
Ceramic Society,
35(9): 2587-2592.
21.
Ji,
W., Parker, B., Falco, S., Zhang, J. Y., Fu, Z. Y. and Todd, R. I. (2017). Ultra-fast
firing: Effect of heating rate on sintering of 3YSZ, with and without an
electric field. Journal of European Ceramic
Society, 37(6): 2547-2551.