Malaysian Journal of Analytical Sciences Vol 23 No 4 (2019): 682 - 689

DOI: 10.17576/mjas-2019-2304-15

 

 

 

PRELIMINARY INVESTIGATION OF LOW CURRENT FLASH SINTERING IN ZIRCONIA NANOPARTICLE COMPACT

 

(Kajian Awal Persinteran Kilat Arus Rendah dalam Nanopartikal Zirkonia Kompak)

 

Michiyuki Yoshida1*, Mitsuki Hada1, Yutaka Shinoda2, Osamu Sakurada1, Fumihiro Wakai2

 

1Department of Chemistry and Biomolecular Science,

Gifu University, 1-1 Yanagido, Gifu-city 501-1193, Japan

2Laboratory for Materials and Structures,

Tokyo Institute of Technology, 4259 Nagatsuta Midori-ku Yokohama-city,226-8503, Japan

 

*Corresponding author:  myoshida@gifu-u.ac.jp

 

 

Received: 31 March 2018; Accepted: 17 April 2019

 

 

Abstract

Flash sintering is a newly developed technique to quickly densify conductive ceramics in the presence of an electric field.  At a critical combination of field and temperature, densification takes place in a few seconds.  In this paper, the feasibility of the densification in flash sintering with low current was investigated in the newly developed compact consisted of zirconia nanoparticles. Homogeneous microstructure with densely packing of nano-particles was successfully obtained by gel-casting of nano-suspension. The grain size and relative density of the sample flash sintered at 30 mA/mm2 were 40.9 nm and 86.8%, respectively. The sample densified with limited grain growth in low current flash sintering. Although the full densification was not achieved in the present study, the effectiveness of the nanoparticle compact to reduce the current for the densification during flash sintering was shown by comparing the results reported in flash sintering with the coarser microstructure.

 

Keywords:  zirconia, flash sintering, gel-casting

 

Abstrak

Pensinteran kilat merupakan satu teknik yang baru dibangunkan untuk mempercepatkan pemampatan seramik konduktif dalam kehadiran medan elektrik. Pada kombinasi kritikal antara medan dan suhu, densifikasi berlaku dalam beberapa saat. Dalam manuskrip ini, keberhasilan densifikasi dalam pensinteran kilat pada arus rendah telah dikaji dalam kompak yang baru dibangunkan terdiri daripada zirkonia nanopartikel. Struktur mikro homogen dengan pengisian padat partikel nano telah berjaya dihasilkan menggunakan acuan gel ampaian nano. Saiz butir dan ketumpatan relatif sampel bersinter pada 30 mA/mm2 masing-masing adalah 40.9 nm dan 86.8%. Sampel telah dimampatkan dengan pertumbuhan butiran yang terhad di dalam arus pensinteran kilat yang rendah. Walaupun pemampatan penuh tidak dapat dicapai di dalam kajian ini, namun keberkesanan kompak nanopartikel untuk merendahkan aliran arus pemampatan ketika pensinteran kilat telah dapat dilihat dengan membandingkan  hasil laporan pensinteran kilat ketika struktur mikro yang lebih besar dijalankan.

 

Kata kunci:  zirkonia, pensinteran kilat, acuan gel

 

References

1.       Cologna, M., Rashkova, B. and Raj, R. (2010). Flash Sintering of Nanograin Zirconia in < 5 s at 850°C. Journal of American Ceramic Society, 93(11): 3556-3559.

2.       Prette, A. L. G., Cologna, M., Sglavo, V. and Raj, R. (2011). Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications. Journal of Power Sources, 196(4): 2061-2065.

3.       Gaur, A. and Sglavo, V. M. (2014). Densification of La0.6Sr0.4Co0.2Fe0.8O3 ceramic by flash sintering at temperature less than 100 °C. Journal of Material Sciences, 49(18): 6321-6332.

4.       Karakuscu, A., Cologna, M., Yarotski, D., Won, J., Francis, J. S. C., Raj, R. and Uberuaga, B. P. (2012). Defect structure of flash-sintered strontium titanate. Journal of American Ceramic Society, 95(8): 2531-2536.

5.       Cologna, M., Francis, J. S. C. and Raj, R. (2011). Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping. Journal of European Ceramic Society, 31(15): 2827-2837.

6.       Muccillo, R. and Muccillo, E. N. S. (2014). Electric field-assisted flash sintering of tin dioxide. Journal of European Ceramic Society, 34(4): 915-923.

7.       Zapata-Solvas, E., Bonilla, S., Wilshaw, P. R. and Todd, R. I. (2013). Preliminary investigation of flash sintering of SiC. Journal of European Ceramic Society, 33(13-14): 2811-2816.

8.       Candelario, V. M., Moreno, R., Todd, R. I. and Ortiz, A. L. (2017). Liquid-phase assisted flash sintering of SiC from powder mixtures prepared by aqueous colloidal processing. Journal of European Ceramic Society, 37(2): 485-498.

9.       Yoshida, H., Sakka, Y., Yamamoto, T., Lebrun, J. M. and Raj, R. (2014). Densification behaviour and microstructural development in undoped yttria prepared by flash-sintering. Journal of European Ceramic Society, 34(4): 991-1000.

10.    Todd, R. I., Zapata-Solvas, E., Bonilla, R. S., Sneddon, T. and Wilshaw, P. R. (2015). Electrical characteristics of flash sintering: thermal runaway of Joule heating. Journal of European Ceramic Society, 35(6): 1865-1877.

11.    Yoshida, M.  Takeno, S. and Sakurada, O. (2016). Fabrication of translucent tetragonal zirconia by gelcasting of thin zirconia nano-slurry. Journal of Ceramic Society of Japan, 124(5): 500-505.

12.    Francis, J. S. C. and Raj, R. (2013). Influence of the field and the current limit on flash sintering at isothermal furnace temperatures. Journal of American Ceramic Society, 96(9): 2754-2758.

13.    Yoshida, M., Falco, S. and Todd. R. I. (2018). Measurement and modelling of electrical resistivity by four-terminal method during flash sintering of 3YSZ. Journal of Ceramic Society of Japan, 126(7): 579-590.

14.    Raj, R. (2012). Joule heating during flash-sintering. Journal of European Ceramic Society, 32(10): 2293-2301.

15.    Tanaka, H. Sawai, S., Morimoto, K. and Hisano, K. (2001). Measurement of spectral emissivity and thermal conductivity of zirconia by thermal radiation calorimetry. Journal of Thermal Analytical Calorimetry, 64(3): 867-72.

16.    Mazaheri, C., Valefi, M., Hesabi, Z. R. and Sadrnezhaad, S. K. (2009). Two-step sintering of nanocrystalline 8Y2O3 stabilized ZrO2 synthesized by glycine nitrate process. Ceramics International, 35(1): 13-20.

17.    Raj, R., Cologna, M., Francis, J. S. C. (2011). Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. Journal of American Ceramic Society, 94(7): 1941-1965.

18.    Naik, K. S., Sglavo, V. M. and Raj, R. (2014). Flash sintering as a nucleation phenomenon and a model thereof. Journal of European Ceramic Society, 34(15): 4063-4067.

19.    Zhang, Y. Y., Jung, J. I. and Luo, J. (2015). Thermal runaway, flash sintering and asymmetrical microstructural development of ZnO and ZnO–Bi2O3 under direct currents. Acta Materialia, 94: 87-100.

20.    Bichaud, E., Chaix, J. M., Carry, C., Kleitz, M. and Steil, M. C. (2015). Flash sintering incubation in Al2O3/TZP composites. Journal of European Ceramic Society, 35(9): 2587-2592.

21.    Ji, W., Parker, B., Falco, S., Zhang, J. Y., Fu, Z. Y. and Todd, R. I. (2017). Ultra-fast firing: Effect of heating rate on sintering of 3YSZ, with and without an electric field. Journal of European Ceramic Society,  37(6): 2547-2551.

 

 




Previous                    Content                    Next