Malaysian Journal of Analytical Sciences Vol 23 No 4 (2019): 690 - 702

DOI: 10.17576/mjas-2019-2304-16

 

 

 

SYNTHESIS AND BINDING PROPERTIES OF TERT-BUTYL AMIDE MACROCYCLES FOR PSEUDOROTAXANES FORMATION

 

(Sintesis dan Sifat Pengikatan Makrosiklik Tetrabutil-Amida bagi Penghasilan Pseudorotazen)

 

Nurul Izzaty Hassan1* and Douglas Philp2

 

1Center for Advanced Material & Renewable Resources,

Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Department of Chemistry,

Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA

 

*Corresponding author:  drizz@ukm.edu.my

 

 

Received: 31 March 2018; Accepted: 17 April 2019

 

 

Abstract

The  tert-butyl  amide  macrocycle  containing ethylene glycol moiety  (cMDG)  was constructed starting from 5-tert-butylisophthalic acid 1 which was activated to acid chloride derivative 2 using thionyl  chloride in toluene. Further, the synthesis of the second macrocycle based on pyridine framework (cMP) was achieved in similar way before coupled to the diamine derivative 4. Following that, the compound’s electronic structure was calculated using simple molecular mechanics calculation to represent the preferable conformation of these macrocycles. In order to evaluate the influence of the benzene ring in the framework of both macrocycles to complex the guests, the following binding experiments were carried out with the synthesized maleimide 5 and CF3 maleimide 6. An equimolar mixture of macrocycle cMDG and maleimide 5 or 6 in CdCl3 was prepared and analysed by 1H and 19F NMR spectroscopy, respectively. The similar binding experiments were then carried out with macrocycle cMP. The association constant, Ka for the complexation of pseudorotaxane [cMDG·5] and [cMP·5] were estimated to be 190 ± 20 M-1 and 160 ± 20 M-1, respectively. On contrary, the association constant for the complexation of pseudorotaxane [cMDG·6] and [cMP·6] complexes were enhanced with a Ka value of 1000 ± 100 M-1 and 460 ± 50 M-1 at 25 °C in CdCl3. In addition, the 1H and 19F NMR spectra of these macrocycles and maleimides showed complexes are in slow exchange on the 1H NMR chemical shift timescale. This can be attributed to significant binding events of pseudorotaxane complexes, compare to the free species observed in isolation. In the case of slow exchange, the Ka was determined using the single-point method.

 

Keywords:  macrocylic, ethylene glycol, pyridine, pseudorotaxane

 

Abstrak

Makrosiklik  tetra-butil  amida  yang  mengandungi  moieti  etilena  glikol  (cMDG)  disintesis  bermula  dari  pengaktifan asid 5-tetrabutilisoftalik 1 kepada sebatian asid klorida 2 menggunakan tionil klorida dalam pelarut toluena. Sebatian perantara ini kemudiannya ditambah kepada sebatian bis amina 3 untuk menghasilkan makrosiklik cMDG melalui sintesis pencairan tinggi. Selain itu, sintesis makrosiklik kedua berasaskan kerangka pyridina (cMP) turut dicapai melalui cara yang sama sebelum ditambah kepada sebatian terbitan diamina 4. Berikutan itu, struktur elektronik makrosiklik dikira menggunakan pengiraan molekular mekanik asas bagi mendapatkan gambaran konformasi yang sesuai. Untuk menilai pengaruh gelang benzena dalam moeiti makrosiklik untuk pengkompleksan dengan tetamu, kajian pengikatan telah dijalankan menggunakan sebatian maleimida 5 dan CF3 maleimida 6 yang telah disintesis terlebih dahulu. Satu campuran dengan kemolaran yang sama di antara makrosiklik cMDG dan maleimida 5 atau 6 dalam pelarut CdCl3 disediakan dan dianalisa menggunakan 1H dan 19F RMN spektroskopi. Kajian pengikatan yang sama turut dijalankan menggunakan makrosiklik cMP. Nilai pemalar pengikatan, Ka bagi kompleks pseudorotazen [cMDG·5] dan [cMP·5] telah dianggarkan sebanyak 190 ± 20 M-1 dan 160 ± 20 M-1, masing-masing. Sebaliknya, kekuatan pengikatan semakin meningkat bagi perkompleksan pseudorotazen [cMDG·6] dan [cMP·6] di mana nilai Ka yang diperolehi ialah 1000 ± 100 M-1 dan 460 ± 50 M-1 pada 25 ° C dalam pelarut CdCl3. Di samping itu, 1H dan 19F RMN spektra bagi sebatian makrosiklik dan maleimida menunjukkan kompleks dalam pertukaran lambat pada 1H NMR anjakan kimia. Ini boleh dikaitkan dengan proses pengikatan signifikan pada kompleks pseudorotazen berbanding sebatian yang tidak berikatan. Nilai Ka ditentukan menggunakan kaedah titik tunggal bagi kes pertukaran lambat.

 

Kata kunci:  makrosikilik, etilena glikol, piridina, pseudorotazen

 

References

1.       Hassan, N. I., del Amo, V., Calder, E. and Philp, D. (2011). Low temperature capture of pseudorotaxanes. Organic Letters, 13(3): 458-461.

2.       Wisner, J. A., Beer, P. D. and Drew, M. G. B. (2011). A demonstration of anion templation and selectivity in pseudorotaxane formation. Angewandte Chemie International Edition, 40: 3606.

3.       Kavallieratos, K., de Gala, S. R., Austin, D. J. and Crabtree, R. H. (1997). A readily available non-preorganized neutral acylic halide receptor with an unusual nonplanar binding conformation. Journal of the American Chemical Society, 119: 2325.

4.       Kavallieratos, K., Bertao, C. M. and Crabtree, R. H. (1999). Hydrogen bonding in anion recognition: A family of versatile, non-preorganized neutral and acyclic receptors. Journal of Organic Chemistry 64: 1675.

5.       Ashton, P. R., Ballardini, R., Balzani, V., Boyd, S. E., Credi, A., Gandolfi, M. T., Gomez-Lopez, M.; Iqbal, S., Philp, D., Preece, J. A., Prodi, L., Ricketts, H. G., Stoddart, J. F., Tolley, M. S., Venturi, M., White, A. J. P. and Williams, D. J. (1997). Simple mechanical molecular and supramolecular machines: photochemical and electrochemical control of switching processes. Chemistry – a European Journal, 3: 152.

6.       Martinez-Diaz, M. V., Spencer, N. and Stoddart, J. F. (1997). The self-assembly of a switchable [2]rotaxane. Angewandte Chemie International Edition, 36: 1904.

7.       Gaviña, P. and Sauvage, J.-P.  (1997). Transition-metal template synthesis of a rotaxane incorporating two different coordinating units in its thread. Tetrahedron Letters, 38: 3521.

8.       Mulder, A., Jukovic, A., Lucas, L. N., van Esch, J., Feringa, B. L., Huskens, J. and Reinhoudt, D. N. (2002). A dithienylethene-tethered beta-cyclodextrin dimer as a photoswitchable host. Chemical Communications, 75(22): 2734.

9.       Illuminati, G. and Mandolini, L. (1998). Ring closure reactions of bifunctional chain molecules. Accounts of Chemical Research 14: 95.

10.    Lindoy, L. F. (1989). The chemistry of macrocyclic ligand complexes. Cambridge University Press, England.

11.    Steed, J. W. and Atwood, J. L. (2000). Supramolecular chemistry. John Wiley & Sons, Ltd, England.

12.    Vidonne, A. and Philp, D. (2008). Integrating replication processes with mechanically interlocked molecular architectures, Tetrahedron, 64: 8464.

13.    Alvarez-Pérez, M., Goldup, S. M., Leigh, D. A. and Slawin, A. M. Z. (2008). A chemically-driven molecular information ratchet. Journal of the American Chemical Society, 130: 1836.

14.    Altieri, A., Aucagne, V., Carrillo, R., Clarkson, G. J., D'Souza, D. M., Dunnett, J. A., Leigh, D. A. and Mullen, K. M. (2011), Sulfur-containing amide-based [2]rotaxanes and molecular shuttles. Chemical Science, 2: 1922.

15.    Vidonne, A., Kosikova, T. and Philp, D. (2016). Exploiting recognition-assembly and reactivity in [2]-rotaxane formation. Chemical Science, 7(4): 2592.

16.    Stewart, J. J. P. (1989). Optimization of parameters for semiempirical methods II. Applications. Journal of Computational Chemistry, 10(2): 221.

17.    Stewart, J. J. P. MOPAC (2009). Stewart Computational Chemistry, Colorado Springs, CO, USA Access from http://openmopacnet.

18.    Ito, J. -I., Miyakawa, T. and Nishiyama, H. (2016). Carbon−carbon bond formation on a bis (oxazolinyl) phenyl− rhodium complex in a reduction and oxidative addition sequence. Organometallics, 25(22): 5216.

19.    Berna, J., Brouwer, A. M., Fazio, S. M., Haraszkiewicz, N., Leigh, D. A. and Lennon, C. M. (2007). A rotaxane mimic of the photoactive yellow protein chromophore environment: effects of hydrogen bonding and mechanical interlocking on a coumarin amide derivative. Chemical Communications, 2007: 1910.

20.    Leigh, D. A. and Thomson, A. R. (2006). Switchable dual binding mode molecular shuttle. Organic Letters 8(23): 5377.

21.    Vickers, M. S. and Beer, P. D. (2007). Anion template assembly of mechanically interlocked structures. Chemical Society Reviews, 36: 211.

22.    Sambrook, M. R., Beer, P. D., Wisner, J. A., Paul, R. L., Cowley, A. R., Szemes, F. and Drew, M. G. B. (2005). Anion-templated assembly of pseudorotaxanes: Importance of anion template, strength of ion-pair thread association, and macrocycle ring size. Journal of the American Chemical Society, 127: 2292.

23.    Koulov, A. V., Mahoney, J. M. and Smith, B. D. (2003). Facilitated transport of sodium or potassium chloride across vesicle membranes using a ditopic salt-binding macrobicycle. Organic and Biomolecular Chemistry, 1: 27.

24.    Vidonne, A. (2009). Exploiting recognition-assembly and reactivity in [2]-rotaxane formation. Thesis of PhD Degree, University of St. Andrews, Scotland.

 

 




Previous                    Content                    Next