Malaysian
Journal of Analytical Sciences Vol 23 No 4 (2019): 690 - 702
DOI:
10.17576/mjas-2019-2304-16
SYNTHESIS
AND BINDING PROPERTIES OF TERT-BUTYL AMIDE MACROCYCLES FOR PSEUDOROTAXANES
FORMATION
(Sintesis dan Sifat Pengikatan Makrosiklik
Tetrabutil-Amida bagi Penghasilan Pseudorotazen)
Nurul Izzaty
Hassan1* and Douglas Philp2
1Center for Advanced Material & Renewable
Resources,
Faculty
of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Department of Chemistry,
Northwestern
University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
*Corresponding
author: drizz@ukm.edu.my
Received: 31 March 2018; Accepted: 17 April 2019
Abstract
The tert-butyl amide macrocycle containing ethylene glycol moiety (cMDG) was constructed
starting from 5-tert-butylisophthalic acid 1
which was activated to acid chloride derivative 2 using thionyl chloride in toluene. Further, the synthesis of the second macrocycle based on pyridine
framework (cMP) was achieved in similar way before coupled to the diamine
derivative 4. Following that, the
compound’s electronic structure was calculated using simple molecular mechanics
calculation to represent the preferable conformation of these macrocycles. In
order to evaluate the influence of the benzene ring in the framework of both
macrocycles to complex the guests, the following binding experiments were carried
out with the synthesized maleimide 5
and CF3 maleimide 6. An
equimolar mixture of macrocycle cMDG and maleimide 5 or 6 in CdCl3
was prepared and analysed by 1H and 19F NMR spectroscopy,
respectively. The similar binding experiments were then carried out with
macrocycle cMP. The association constant, Ka
for the complexation of pseudorotaxane [cMDG·5] and [cMP·5] were estimated to
be 190 ± 20 M-1 and 160 ± 20 M-1, respectively. On
contrary, the association constant for the complexation of pseudorotaxane
[cMDG·6] and [cMP·6] complexes were enhanced with a Ka value of 1000 ± 100 M-1 and 460 ± 50 M-1
at 25 °C in CdCl3. In addition, the 1H and 19F
NMR spectra of these macrocycles and maleimides showed complexes are in slow
exchange on the 1H NMR chemical shift timescale. This can be
attributed to significant binding events of pseudorotaxane complexes, compare
to the free species observed in isolation. In the case of slow exchange, the Ka was determined using the
single-point method.
Keywords: macrocylic, ethylene glycol, pyridine,
pseudorotaxane
Abstrak
Makrosiklik tetra-butil amida yang mengandungi moieti etilena glikol (cMDG) disintesis bermula dari pengaktifan asid
5-tetrabutilisoftalik 1 kepada
sebatian asid klorida 2 menggunakan
tionil klorida dalam pelarut toluena. Sebatian perantara ini kemudiannya
ditambah kepada sebatian bis amina 3
untuk menghasilkan makrosiklik cMDG melalui sintesis pencairan tinggi. Selain
itu, sintesis makrosiklik kedua berasaskan kerangka pyridina (cMP) turut
dicapai melalui cara yang sama sebelum ditambah kepada sebatian terbitan
diamina 4. Berikutan itu, struktur
elektronik makrosiklik dikira menggunakan pengiraan molekular mekanik asas bagi
mendapatkan gambaran konformasi yang sesuai. Untuk menilai pengaruh gelang
benzena dalam moeiti makrosiklik untuk pengkompleksan dengan tetamu, kajian pengikatan
telah dijalankan menggunakan sebatian maleimida 5 dan CF3 maleimida 6
yang telah disintesis terlebih dahulu. Satu campuran dengan kemolaran yang sama
di antara makrosiklik cMDG dan maleimida 5
atau 6 dalam pelarut CdCl3
disediakan dan dianalisa menggunakan 1H dan 19F RMN
spektroskopi. Kajian pengikatan yang sama turut dijalankan menggunakan
makrosiklik cMP. Nilai pemalar pengikatan, Ka
bagi kompleks pseudorotazen [cMDG·5] dan [cMP·5] telah dianggarkan sebanyak 190
± 20 M-1 dan 160 ± 20 M-1, masing-masing. Sebaliknya,
kekuatan pengikatan semakin meningkat bagi perkompleksan pseudorotazen [cMDG·6]
dan [cMP·6] di mana nilai Ka
yang diperolehi ialah 1000 ± 100 M-1 dan 460 ± 50 M-1
pada 25 ° C dalam pelarut CdCl3. Di samping itu, 1H dan 19F
RMN spektra bagi sebatian makrosiklik dan maleimida menunjukkan kompleks dalam
pertukaran lambat pada 1H NMR anjakan kimia. Ini boleh dikaitkan dengan proses
pengikatan signifikan pada kompleks pseudorotazen berbanding sebatian yang tidak berikatan. Nilai Ka ditentukan menggunakan
kaedah titik tunggal bagi kes pertukaran lambat.
Kata kunci: makrosikilik, etilena glikol, piridina, pseudorotazen
References
1.
Hassan,
N. I., del Amo, V., Calder, E. and Philp, D. (2011). Low temperature capture of
pseudorotaxanes. Organic Letters,
13(3): 458-461.
2.
Wisner,
J. A., Beer, P. D. and Drew, M. G. B. (2011). A demonstration of anion
templation and selectivity in pseudorotaxane formation. Angewandte Chemie International Edition, 40: 3606.
3.
Kavallieratos,
K., de Gala, S. R., Austin, D. J. and Crabtree, R. H. (1997). A readily available non-preorganized neutral acylic halide
receptor with an unusual nonplanar binding conformation. Journal of the American Chemical Society, 119: 2325.
4.
Kavallieratos,
K., Bertao, C. M. and Crabtree, R. H. (1999). Hydrogen bonding in anion
recognition: A family of versatile, non-preorganized neutral and acyclic
receptors. Journal of Organic Chemistry
64: 1675.
5.
Ashton,
P. R., Ballardini, R., Balzani, V., Boyd, S. E., Credi, A., Gandolfi, M. T.,
Gomez-Lopez, M.; Iqbal, S., Philp, D., Preece, J. A., Prodi, L., Ricketts, H.
G., Stoddart, J. F., Tolley, M. S., Venturi, M., White, A. J. P. and Williams,
D. J. (1997). Simple mechanical molecular and supramolecular machines:
photochemical and electrochemical control of switching processes. Chemistry – a European Journal, 3: 152.
6.
Martinez-Diaz,
M. V., Spencer, N. and Stoddart, J. F. (1997). The self-assembly of a
switchable [2]rotaxane. Angewandte Chemie
International Edition, 36: 1904.
7.
Gaviña,
P. and Sauvage, J.-P. (1997).
Transition-metal template synthesis of a rotaxane incorporating two different
coordinating units in its thread. Tetrahedron
Letters, 38: 3521.
8.
Mulder,
A., Jukovic, A., Lucas, L. N., van Esch, J., Feringa, B. L., Huskens, J. and Reinhoudt,
D. N. (2002). A dithienylethene-tethered beta-cyclodextrin dimer as a
photoswitchable host. Chemical
Communications, 75(22): 2734.
9.
Illuminati,
G. and Mandolini, L. (1998). Ring closure reactions of bifunctional chain
molecules. Accounts of Chemical Research
14: 95.
10.
Lindoy,
L. F. (1989). The chemistry of macrocyclic ligand complexes. Cambridge
University Press, England.
11.
Steed,
J. W. and Atwood, J. L. (2000). Supramolecular chemistry. John Wiley &
Sons, Ltd, England.
12.
Vidonne,
A. and Philp, D. (2008). Integrating replication processes with mechanically
interlocked molecular architectures, Tetrahedron,
64: 8464.
13.
Alvarez-Pérez,
M., Goldup, S. M., Leigh, D. A. and Slawin, A. M. Z. (2008). A
chemically-driven molecular information ratchet. Journal of the American Chemical Society, 130: 1836.
14.
Altieri,
A., Aucagne, V., Carrillo, R., Clarkson, G. J., D'Souza, D. M., Dunnett, J. A.,
Leigh, D. A. and Mullen, K. M. (2011), Sulfur-containing amide-based
[2]rotaxanes and molecular shuttles. Chemical
Science, 2: 1922.
15.
Vidonne,
A., Kosikova, T. and Philp, D. (2016). Exploiting recognition-assembly and
reactivity in [2]-rotaxane formation. Chemical
Science, 7(4): 2592.
16.
Stewart,
J. J. P. (1989). Optimization of parameters for semiempirical methods II.
Applications. Journal of Computational
Chemistry, 10(2): 221.
17.
Stewart,
J. J. P. MOPAC (2009). Stewart Computational Chemistry, Colorado Springs, CO,
USA Access from http://openmopacnet.
18.
Ito,
J. -I., Miyakawa, T. and Nishiyama, H. (2016). Carbon−carbon bond formation on
a bis (oxazolinyl) phenyl− rhodium complex in a reduction and oxidative
addition sequence. Organometallics,
25(22): 5216.
19.
Berna,
J., Brouwer, A. M., Fazio, S. M., Haraszkiewicz, N., Leigh, D. A. and Lennon,
C. M. (2007). A rotaxane mimic of the photoactive yellow protein chromophore
environment: effects of hydrogen bonding and mechanical interlocking on a
coumarin amide derivative. Chemical
Communications, 2007: 1910.
20.
Leigh,
D. A. and Thomson, A. R. (2006). Switchable dual binding mode molecular shuttle.
Organic Letters 8(23): 5377.
21.
Vickers,
M. S. and Beer, P. D. (2007). Anion template assembly of mechanically
interlocked structures. Chemical Society
Reviews, 36: 211.
22.
Sambrook,
M. R., Beer, P. D., Wisner, J. A., Paul, R. L., Cowley, A. R., Szemes, F. and Drew,
M. G. B. (2005). Anion-templated assembly of pseudorotaxanes: Importance of
anion template, strength of ion-pair thread association, and macrocycle ring
size. Journal of the American Chemical
Society, 127: 2292.
23.
Koulov,
A. V., Mahoney, J. M. and Smith, B. D. (2003). Facilitated transport of sodium
or potassium chloride across vesicle membranes using a ditopic salt-binding
macrobicycle. Organic and Biomolecular
Chemistry, 1: 27.
24.
Vidonne,
A. (2009). Exploiting recognition-assembly and reactivity in [2]-rotaxane
formation. Thesis of PhD Degree, University of St. Andrews, Scotland.