Malaysian
Journal of Analytical Sciences Vol 23 No 4 (2019): 703 – 714
DOI:
10.17576/mjas-2019-2304-17
EFFECT OF PLASTICIZERS AND LITHIUM PERCHLORATE ON POLY(L-LACTIC
ACID)-POLY(PROPYLENE GLYCOL) SOLID POLYMER ELECTROLYTE
(Kesan Pemplastik dan Litium Perklorat terhadap Elektrolit
Polimer Pepejal Poli(L-Asid Laktik)-Poli(Propilena Glikol))
Siti
Munirah Manap1, Azizan Ahmad1, Mohd Sani Sarjadi2,
Farah Hannan Anuar1*
1Faculty of Science and Technology,
Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Faculty of Science and Natural Resources,
Universiti Malaysia Sabah,
88400 Kota Kinabalu, Sabah, Malaysia
*Corresponding author: farahhannan@ukm.edu.my
Received: 31 March 2018; Accepted: 17 April 2019
Abstract
Solid
polymer electrolyte (SPE) films were developed from poly(L-lactic
acid)-poly(propylene glycol) (PLLA-PPG) with ethylene carbonate (EC) or
propylene carbonate (PC) as plasticizer and lithium perchlorate (LiClO4)
salt using solution casting method. The conductivity behaviours of the samples
prepared were studied by electron impedance spectroscopy (EIS). From the EIS
analysis, PLLA-PPG with 30 wt.% of EC and 25 wt.% of LiClO4 shows
the highest conductivity value of 4.57 × 10-5 S cm-1 at
room temperature. The attenuated total reflection-Fourier transform infrared
spectroscopy (ATR-FTIR) confirm that there is chemical interaction between
polymer host and lithium cation from lithium perchlorate. The shift of
wavenumber for carbonyl (C=O) and ether (C-O-C) can be seen in ATR-FTIR spectrum.
The crystallinity of PLLA was studied using X-ray diffraction (XRD) analysis.
The absence of diffraction peaks corresponding to LiClO4 in SPE,
which indicates that LiClO4 solvates well in the PLLA-PPG film.
Thermal study by TGA indicated that PLLA-PPG SPE was thermally stable up to 270
ºC.
Keywords: poly(l-lactic acid), poly(propylene glycol),
solid polymer electrolyte, plasticizer
Abstrak
Filem elektrolit polimer pepejal (EPP) dihasilkan
daripada poli(L-asid laktid)-poli(propilena glikol) (PLLA-PPG) dengan etilena
karbonat (EC) atau propilena karbonat (PC) sebagai pemplastik dan garam litium
perkhlorat (LiClO4)
menggunakan kaedah pengacuanan larutan. Kekonduksian ionik bagi sampel
yang disediakan dikaji menggunakan spektroskopi elektron impedan (EIS).
Berdasarkan analisis EIS, PLLA-PPG dengan 30 bt.% EC dan 25 bt.% LiClO4
menunjukkan nilai kekonduksian ionik tertinggi iaitu 4.587 × 10-5 S
cm-1 pada suhu bilik. Spektroskopi inframerah transformasi Fourier
(ATR-FTIR) memberi kepastian bahawa terdapat interaksi kimia di antara hos
polimer dan kation litium daripada litium perklorat. Perubahan nombor gelombang
pada kumpulan berfungsi karbonil (C=O) dan eter (C-O-C) dapat dilihat pada
spektrum ATR-FTIR. Kehabluran PLLA dikaji menggunakan analisis pembelauan
sinar-X (XRD). Kehilangan puncak LiClO4 dalam EPP menunjukkan bahawa
percampuran di antara garam LiClO4 dan filem PLLA-PPG berlaku dengan
baik. Analisis terma menunjukkan bahawa EPP PLLA-PPG adalah stabil secara terma
sehingga suhu 270 ºC.
Kata kunci: poli(l-asid laktik),
poli(propilena glikol), elektrolit polimer pepejal, pemplastik
References
1.
Rodrigues,
L. C., Silva, M. M. and Smith, M. J. (2012). Synthesis and characterization of
amarphous poly(ethylene oxide)/poly(trimethylene carbonate) polymer blend
electrolytes. Electrochimica Acta,
86: 339-345.
2.
Noor,
S. A. M., Ahmad, A., Rahman, M. Y. A and Talib, I. A. (2010b). Solid polymeric
electrolyte of poly(ethylene)oxide-50% epoxidized natural rubber-lithium
triflate (PEO-ENR50-LiCF3SO3). Natural Science, 3: 190-196.
3.
Murata,
K., Izuchi, S. and Yoshihisa, Y. (2000). An overview of the research and
development of solid polymer electrolyte batteries. Electrochimica Acta, 45:1501-1508.
4.
Cha,
D. K. and Park, S. M. (1998). Electrochemical characterization of polyethylene
glycols as solid polymer electrolytes. Journal
of Electroanalytical Chemistry, 459: 135-144.
5.
Ng,
B. C., Wong, H. Y., Chew, K. W. and Osman, Z. (2011). Development and
characterization of poly-
6.
Tan,
C. H., Ahmad, A. and Anuar F. H. (2014). Synthesis and characterization of
polylactide-poly(ethylene glycol) block copolymer as solid polymer electrolyte.
Asian Journal of Chemistry, 26:
230-236.
7.
Piorkowska,
E., Kulinski, Z., Galeski, A. and Masirek, R. (2006). Plasticization of
semicrystalline poly(l-lactide) with poly(propylene glycol). Polymer, 47: 7178-7188.
8.
Gupta,
B., Revagade, N. and Hilborn, J. (2007). Poly(lactic acid) fiber: An overview. Progress in Polymer Science, 32:
455-482.
9.
Su’ait,
M. S., Ahmad, A., Badri, K. H., Mohamed, N. S., Rahman, M. Y. A., Ricardo, C.
L. A. and Scardi, P. (2014). The potential of polyurethane bio-based solid
polymer electrolyte for photoelectrochemical cell application. International Journal of Hydrogen Energy,
39: 3005-3017.
10.
Chew,
K. W., Ng, T. C. and How Z. H. (2013). Conductivity and microstructure study of
PLA-based polymer electrolyte salted with lithium perchlorate, LiClO4.
International Journal of Electrochemical
Science, 8: 6354-6364.
11.
Ahmad,
A., Rahman, M. Y. A., Harun, H., Su’ait, M. S. and Yarmo, M. A. (2012).
Preparation and characterization of 49% poly(methyl methacrylate) grafted
natural rubber (MG49)-stannum (IV) oxide (SnO2)-lithium salt based
composite polymer electrolyte. International
Journal of Electrochemical Science, 7: 8309-8325.
12.
Su’ait,
M. S., Ahmad, A., Hamzah, H. and Rahman, M. Y. A. (2011). Effect of lithium
salt concentrations on blended 49% poly(methyl methacrylate) grafted natural
rubber and poly(methyl methacrylate) based solid polymer electrolyte. Electrochimica Acta, 57: 123-131.
13.
Ji,
J, K. and Zhong, W. H. (2011). Simultaneous improvement in ionic conductivity
and mechanical properties of multi-functional block-copolymer modified solid
polymer electrolytes for lithium ion batteries. Journal of Power Sources, 196: 10163-10168.
14.
Isa,
K. B. M., Othman, L. and Osman Z. (2011). Comparative studies on plasticized
and unplasticized polyacrylonitrile (pan) polymer electrolytes containing
lithium and sodium salts. Sains
Malaysiana, 40: 695-700.
15.
Pandey,
K., Asthana, N., Dwivedi, M. M. and Chaturvedi, S. K. (2013). Effect of
plasticizers on structural and dielectric behaviour of [PEO + (NH4)2C4H8(COO)2]
polymer electrolyte. Journal of Polymers,
2013: 752596.
16.
Dash.
S. and Ghosh. A. (2015). Ionic conductivity and dielectric permittivity of
PEO-LIClO4 solid polymer electrolyte plasticized with propylene
carbonate. AIP Advances 5: 027125.
17.
Pradhan,
D. K., Choudhary, R. N. P., Samantaray, B. K., Karan, N. K. and Katiyar, R. S.
(2007). Effect of plasticizer on structural and electrical properties of
polymer nanocomposite electrolytes. International
Journal of Electrochemical Science, 2: 861-871.
18.
Ibrahim,
S., Yasin, S. M. M., Ahmad, R. and Johan M. R. (2012). Effects of various ec
plasticizer concentrations on salted PEO based solid polymer electrolytes. International Journal of Plastic Technology,
16(2): 125-135.
19.
Pitawala,
H. M. J. C., Dissanayake, M. A. K. L., Seneviratne, V. A., Mellander, B. -E.
and Albinson I. (2008). Effect of plasticizers (EC or PC) on the ionic
conductivity and thermal properties of the (PEO)9LiTf: Al2O3
nanocomposite polymer electrolyte system. Journal
of Solid State Electrochemistry, 12: 783-789.
20.
Johan,
M. R., Shy, O. H., Ibrahim, S., Yassin, S. M. M. and Hui, T. Y. (2011). Effects
of Al2O3 nanofiller and EC plasticizer on the ionic
conductivity enhancement of solid PEO-LiCF3SO3 solid
polymer electrolyte. Solid State Ionics, 196:
41-47.
21.
Lim,
C. S., Teoh, K. H., Ng, H. M., Liew, C. W. and Ramesh, S. (2017). Ionic
conductivity enhancement studies of composite polymer electrolyte based on
poly(vinyl alcohol)-lithium perchlorate-titanium oxide. Advanced Materials Letters, 8(4): 465-471.