Malaysian Journal of Analytical Sciences Vol 23 No 4 (2019): 703 – 714

DOI: 10.17576/mjas-2019-2304-17

 

 

 

EFFECT OF PLASTICIZERS AND LITHIUM PERCHLORATE ON POLY(L-LACTIC ACID)-POLY(PROPYLENE GLYCOL) SOLID POLYMER ELECTROLYTE

 

(Kesan Pemplastik dan Litium Perklorat terhadap Elektrolit Polimer Pepejal Poli(L-Asid Laktik)-Poli(Propilena Glikol))

 

Siti Munirah Manap1, Azizan Ahmad1, Mohd Sani Sarjadi2, Farah Hannan Anuar1*

 

1Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Faculty of Science and Natural Resources,

Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

 

*Corresponding author:  farahhannan@ukm.edu.my

 

 

Received: 31 March 2018; Accepted: 17 April 2019

 

 

Abstract

Solid polymer electrolyte (SPE) films were developed from poly(L-lactic acid)-poly(propylene glycol) (PLLA-PPG) with ethylene carbonate (EC) or propylene carbonate (PC) as plasticizer and lithium perchlorate (LiClO4) salt using solution casting method. The conductivity behaviours of the samples prepared were studied by electron impedance spectroscopy (EIS). From the EIS analysis, PLLA-PPG with 30 wt.% of EC and 25 wt.% of LiClO4 shows the highest conductivity value of 4.57 × 10-5 S cm-1 at room temperature. The attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) confirm that there is chemical interaction between polymer host and lithium cation from lithium perchlorate. The shift of wavenumber for carbonyl (C=O) and ether (C-O-C) can be seen in ATR-FTIR spectrum. The crystallinity of PLLA was studied using X-ray diffraction (XRD) analysis. The absence of diffraction peaks corresponding to LiClO4 in SPE, which indicates that LiClO4 solvates well in the PLLA-PPG film. Thermal study by TGA indicated that PLLA-PPG SPE was thermally stable up to 270 ºC.

 

Keywords:  poly(l-lactic acid), poly(propylene glycol), solid polymer electrolyte, plasticizer

 

Abstrak

Filem elektrolit polimer pepejal (EPP) dihasilkan daripada poli(L-asid laktid)-poli(propilena glikol) (PLLA-PPG) dengan etilena karbonat (EC) atau propilena karbonat (PC) sebagai pemplastik dan garam litium perkhlorat (LiClO4)  menggunakan kaedah pengacuanan larutan. Kekonduksian ionik bagi sampel yang disediakan dikaji menggunakan spektroskopi elektron impedan (EIS). Berdasarkan analisis EIS, PLLA-PPG dengan 30 bt.% EC dan 25 bt.% LiClO4 menunjukkan nilai kekonduksian ionik tertinggi iaitu 4.587 × 10-5 S cm-1 pada suhu bilik. Spektroskopi inframerah transformasi Fourier (ATR-FTIR) memberi kepastian bahawa terdapat interaksi kimia di antara hos polimer dan kation litium daripada litium perklorat. Perubahan nombor gelombang pada kumpulan berfungsi karbonil (C=O) dan eter (C-O-C) dapat dilihat pada spektrum ATR-FTIR. Kehabluran PLLA dikaji menggunakan analisis pembelauan sinar-X (XRD). Kehilangan puncak LiClO4 dalam EPP menunjukkan bahawa percampuran di antara garam LiClO4 dan filem PLLA-PPG berlaku dengan baik. Analisis terma menunjukkan bahawa EPP PLLA-PPG adalah stabil secara terma sehingga suhu 270 ºC.

 

Kata kunci:  poli(l-asid laktik), poli(propilena glikol), elektrolit polimer pepejal, pemplastik

 

References

1.       Rodrigues, L. C., Silva, M. M. and Smith, M. J. (2012). Synthesis and characterization of amarphous poly(ethylene oxide)/poly(trimethylene carbonate) polymer blend electrolytes. Electrochimica Acta, 86: 339-345.

2.       Noor, S. A. M., Ahmad, A., Rahman, M. Y. A and Talib, I. A. (2010b). Solid polymeric electrolyte of poly(ethylene)oxide-50% epoxidized natural rubber-lithium triflate (PEO-ENR50-LiCF3SO3). Natural Science, 3: 190-196.

3.       Murata, K., Izuchi, S. and Yoshihisa, Y. (2000). An overview of the research and development of solid polymer electrolyte batteries. Electrochimica Acta, 45:1501-1508.

4.       Cha, D. K. and Park, S. M. (1998). Electrochemical characterization of polyethylene glycols as solid polymer electrolytes. Journal of Electroanalytical Chemistry, 459: 135-144.

5.       Ng, B. C., Wong, H. Y., Chew, K. W. and Osman, Z. (2011). Development and characterization of poly- -caprolactone-based polymer electrolyte for lithium rechargeable battery. International Journal of Electrochemical Science, 6: 4355-4364.

6.       Tan, C. H., Ahmad, A. and Anuar F. H. (2014). Synthesis and characterization of polylactide-poly(ethylene glycol) block copolymer as solid polymer electrolyte. Asian Journal of Chemistry, 26: 230-236.

7.       Piorkowska, E., Kulinski, Z., Galeski, A. and Masirek, R. (2006). Plasticization of semicrystalline poly(l-lactide) with poly(propylene glycol). Polymer, 47: 7178-7188.

8.       Gupta, B., Revagade, N. and Hilborn, J. (2007). Poly(lactic acid) fiber: An overview. Progress in Polymer Science, 32: 455-482.

9.       Su’ait, M. S., Ahmad, A., Badri, K. H., Mohamed, N. S., Rahman, M. Y. A., Ricardo, C. L. A. and Scardi, P. (2014). The potential of polyurethane bio-based solid polymer electrolyte for photoelectrochemical cell application. International Journal of Hydrogen Energy, 39: 3005-3017.

10.    Chew, K. W., Ng, T. C. and How Z. H. (2013). Conductivity and microstructure study of PLA-based polymer electrolyte salted with lithium perchlorate, LiClO4. International Journal of Electrochemical Science, 8: 6354-6364.

11.    Ahmad, A., Rahman, M. Y. A., Harun, H., Su’ait, M. S. and Yarmo, M. A. (2012). Preparation and characterization of 49% poly(methyl methacrylate) grafted natural rubber (MG49)-stannum (IV) oxide (SnO2)-lithium salt based composite polymer electrolyte. International Journal of Electrochemical Science, 7: 8309-8325.

12.    Su’ait, M. S., Ahmad, A., Hamzah, H. and Rahman, M. Y. A. (2011). Effect of lithium salt concentrations on blended 49% poly(methyl methacrylate) grafted natural rubber and poly(methyl methacrylate) based solid polymer electrolyte. Electrochimica Acta, 57: 123-131.

13.    Ji, J, K. and Zhong, W. H. (2011). Simultaneous improvement in ionic conductivity and mechanical properties of multi-functional block-copolymer modified solid polymer electrolytes for lithium ion batteries. Journal of Power Sources, 196: 10163-10168.

14.    Isa, K. B. M., Othman, L. and Osman Z. (2011). Comparative studies on plasticized and unplasticized polyacrylonitrile (pan) polymer electrolytes containing lithium and sodium salts. Sains Malaysiana, 40: 695-700.

15.    Pandey, K., Asthana, N., Dwivedi, M. M. and Chaturvedi, S. K. (2013). Effect of plasticizers on structural and dielectric behaviour of [PEO + (NH4)2C4H8(COO)2] polymer electrolyte. Journal of Polymers, 2013: 752596.

16.    Dash. S. and Ghosh. A. (2015). Ionic conductivity and dielectric permittivity of PEO-LIClO4 solid polymer electrolyte plasticized with propylene carbonate. AIP Advances 5: 027125.

17.    Pradhan, D. K., Choudhary, R. N. P., Samantaray, B. K., Karan, N. K. and Katiyar, R. S. (2007). Effect of plasticizer on structural and electrical properties of polymer nanocomposite electrolytes. International Journal of Electrochemical Science, 2: 861-871.

18.    Ibrahim, S., Yasin, S. M. M., Ahmad, R. and Johan M. R. (2012). Effects of various ec plasticizer concentrations on salted PEO based solid polymer electrolytes. International Journal of Plastic Technology, 16(2): 125-135.

19.    Pitawala, H. M. J. C., Dissanayake, M. A. K. L., Seneviratne, V. A., Mellander, B. -E. and Albinson I. (2008). Effect of plasticizers (EC or PC) on the ionic conductivity and thermal properties of the (PEO)9LiTf: Al2O3 nanocomposite polymer electrolyte system. Journal of Solid State Electrochemistry, 12: 783-789.

20.    Johan, M. R., Shy, O. H., Ibrahim, S., Yassin, S. M. M. and Hui, T. Y. (2011). Effects of Al2O3 nanofiller and EC plasticizer on the ionic conductivity enhancement of solid PEO-LiCF3SO3 solid polymer electrolyte. Solid State Ionics, 196: 41-47.

21.    Lim, C. S., Teoh, K. H., Ng, H. M., Liew, C. W. and Ramesh, S. (2017). Ionic conductivity enhancement studies of composite polymer electrolyte based on poly(vinyl alcohol)-lithium perchlorate-titanium oxide. Advanced Materials Letters, 8(4): 465-471.

 

 




Previous                    Content                    Next