Malaysian Journal of Analytical Sciences Vol 23 No 5 (2019): 849 - 860

DOI: 10.17576/mjas-2019-2305-10

 

 

 

THIOL MODIFIED AMPEROMETRIC IMMUNOSENSOR FOR BENZO[a]PYRENE DETECTION IN SURFACE RIVER WATER SAMPLES

 

(Immunosensor Amperometrik Diubahsuai Tiol untuk Pengesanan Benzo[a]pirina dalam Sampel Air Sungai Permukaan)

 

Noor Sheryna Jusoh, Tuan Fauzan Tuan Omar, Azrilawani Ahmad*

 

Faculty of Science and Marine Environment,

Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

 

*Corresponding author:  azrilawani.ahmad@umt.edu.my

 

 

Received: 27 May 2019; Accepted: 28 August 2019

 

 

Abstract

An amperometric immunosensor for the determination of benzo[a]pyrene (BaP) in surface river water samples was developed using screen-printed gold electrodes (SPGEs). The SPGE was modified with 11-mercaptoundecanoic acid (11-MUA) and immobilised the biomolecules on SPGE by applying an indirect competitive enzyme-linked immunosorbent assay (ELISA). The sensitivity of the competitive assay on bare and modified electrodes was compared electrochemically by conducting an amperometric measurement at 300 mV. The limit of detection (LOD) recorded for the bare SPGE was 0.26 mg/L and that for the modified SPGE was 0.01 mg/L. The lower LOD value proved the better sensitivity of the biosensor in the presence of 11-MUA. The recovery study carried out for water samples showed good recovery, ranging from 97%–114%. The improved biosensor method was tested using real water samples collected from Semerak River, Kelantan. An amperometric detection of real water samples showed no BaP for all the sampling stations. The developed immunosensor was then compared with a gas chromatography-flame ionisation detector (GC-FID); the corresponding results revealed that the developed amperometric immunosensor showed higher sensitivity than the GC-FID in the determination of BaP in environmental water.

 

Keywords:    amperometric measurement, enzyme-linked immunosorbent assay, benzo(a)pyrene, gas chromatography-flame ionisation detector

 

Abstrak

Imunosensor amperometrik untuk penentuan benzo[a]pirina (BaP) dalam sampel air sungai permukaan dibangunkan menggunakan elektrod emas skrin tercetak (SPGE). SPGE telah diubahsuai dengan asid 11-merkaptoundekanoik (11-MUA) dan pemegunan biomolekul pada SPGE dengan menggunakan asai imunojerapan berpaut enzim berpesaingan tak langsung (ELISA). Kepekaan ujian kompetitif pada elektrod kosong dan diubahsuai telah dibandingkan secara elektrokimia dengan menjalankan pengukuran amperometrik pada 300 mV. Had pengesanan (LOD) yang direkodkan untuk SPGE kosong adalah 0.26 mg / L dan bagi SPGE diubah suai adalah 0.01 mg / L. LOD rendah membuktikan kepekaan biosensor yang lebih baik dengan kehadiran 11-MUA. Kajian perolehan semula yang dijalankan untuk sampel air menunjukkan perolehan semula yang baik, dari 97%-114%. Kaedah biosensor yang lebih baik telah diuji menggunakan sampel air sebenar yang diambil dari Sungai Semerak, Kelantan. Pengesanan amperometrik sampel air sebenar menunjukkan tiada BaP untuk semua stesen pensampelan. Imunosensor yang dibangunkan kemudiannya dibandingkan dengan kromatografi gas pengesan nyala pengionan (GC-FID); keputusan mendedahkan bahawa imunosensor amperometrik yang dibangunkan menunjukkan kepekaan yang lebih tinggi berbanding teknik kromatografi untuk penentuan BaP dalam air alam sekitar.

 

Kata kunci:    pengukuran amperometrik, asai imunojerapan berpaut enzim, benzo[a]pirina, kromatografi gas pengesan nyala pengionan

 

References

1.       Moina, C. and Ybarra, G. (2012). Fundamentals and applications of immunosensors: Advances in Immunoassay Technology. Croatia: InTech. pp. 65 – 80.

2.       Behera, B. K., Das, A., Sarkar, D. J., Weerathunge, P., Parida, P. K., Das, B. K., Thavamani, P., Ramanathan, R. and Bansal, V. (2018). Polycyclic aromatic hydrocarbons (PAHs) in inland aquatic ecosystems: Perils and remedies through biosensors and bioremediation. Environmental Pollution, 241: 212 – 233.

3.       Nsibande, S. A., Montaseri, H. and Forbes, P. B. C. (2019). Advances in the application of nanomaterial-based sensors for detection of polycyclic aromatic hydrocarbons in aquatic systems. Trends in Analytical Chemistry, 115: 52 – 69.

4.       Sun, Y., Zhao, X., Zhang, D., Ding, A., Chen, C., Huang, W.E. and Zhang, H. (2017). New naphthalene whole-cell bioreporter for measuring and assessing naphthalene in polycyclic aromatic hydrocarbons contaminated site. Chemosphere, 186: 510 – 518.

5.       Ahmad, A. and Moore, E. J. (2009). Comparison of cell-based biosensors with traditional analytical techniques for cytotoxicity monitoring and screening of polycyclic aromatic hydrocarbons in the environment. Analytical Letters, 42: 1 – 28.

6.       Qiao, B., Li, Y., Hu, P., Sun, Y., Si, Z., Lu, S., Ren, H., Liu, Z., Zhang, Y. and Zhou, Y. (2018). EuNPs-MAb fluorescent probe based immunochromatographic strip for rapid and sensitive detection of fluorene. Sensors and Actuators B: Chemical, 262: 221 – 227.

7.       Hayat, A. and Marty, J.L. (2014). Disposable screen-printed electrochemical sensors: Tools for environmental monitoring. Sensors, 14: 10432 – 10453.

8.       Bernalte, E., Marín-Sánchez, C., Pinilla-Gil, E. and Brett, C.M.A. (2013). Characterisation of screen-printed gold and gold nanoparticle-modified carbon sensors by electrochemical impedance spectroscopy. Journal of Electroanalytical Chemistry, 709: 70 – 76.

9.       García-González, R., Fernández-Abedul, M.T., Pernía, A. and Costa-García, A. (2008). Electrochemical characterization of different screen-printed gold electrodes. Electrochimica Acta, 53(8): 3242 – 3249.

10.    Wan, H., Sun, Q., Li, H., Sun, F., Hu, N. and Wang, P. (2015). Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper. Sensors and Actuators B: Chemical, 209: 336 – 342.

11.    Arduini, F., Guidone, S., Amine, A., Palleschi, G. and Moscone, D. (2013). Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sensors & Actuators: B. Chemical, 179: 201 – 208.

12.    Cordeiro, T. A. R., Goncalves, M. V. C., Franco, D. L., Reis, A. B., Martins, H. R. and Ferreira, L. F. (2019). Label-free electrochemical impedance immunosensor based on modified screen-printed gold electrodes for the diagnosis of canine visceral leishmaniasis. Talanta, 195: 327 – 332.

13.    Pandey, P., Pandey, A. and Shukla, N. K. (2018). Screen printed gold electrode with cysteamine and single walled carbon nanotubes for the recognition of prostate specific antigen. Materials Today: Proceedings, 5: 15311 – 15318.

14.    Malecka, K., Stachyra, A., Góra-Sochacka, A., Sirko, A., Zagórski-Ostoja, W., Radecka, H. and Radecki, J. (2016). Electrochemical genosensor based on disc and screen printed gold electrodes for detection of specific DNA and RNA sequences derived from Avian Influenza Virus H5N1. Sensors and Actuators B: Chemical, 224: 290 – 297.

15.    Hatefi-Mehrjardi, A. (2013). Bienzyme-self assembled monolayer on gold electrode: An amperometric biosensor for carbaryl determination. Electrochimica Acta, 114: 394 – 402.

16.    Shervedani, R.K. and Pourbeyram, S. (2010) Electrochemical determination of calf thymus DNA on Zn(IV) immobilized on gold-mercapropropionic-acid self-assembeled monolayer. Bioelectrochemistry, 77 (2): 100 – 105.

17.    Othman, M. A. F., Ahmad, A. and Zuki, H. M. (2016). Dithizone modified electrode for the determination of metals ion in aqueous solution. Malaysian Journal of Analytical Sciences, 20(1): 197 – 204.

18.    Fahnrich, K. A., Pravda, M. and Guilbault, G. G. (2003). Disposable amperometric immunosensor for the detection of polycyclic aromatic hydrocarbons (PAHs) using screen-printed electrodes. Biosensors and Bioelectronics, 18: 73 – 82.

19.    Zhang, Y. and Zhuang, H. S. (2010). Amperometric immunosensor based on layer-by-layer assembly of thiourea and nano-gold particles on gold electrode for determination of naphthalene. Chinese Journal of Analytical Chemistry, 38(2): 153 – 157.

20.    Li, T., Choi, Y. H., Shin, Y. B., Kim, H. J. and Kim, M. G. (2016). A fluorescence enhancement-based label-free homogeneous immunoassay of benzo[a]pyrene (BaP) in aqueous solutions. Chemosphere, 150: 407 – 413.

21.    Beloglazova, N. V., Lenain, P., Rycke, E. D., Goryacheva, I. Y., Knopp, D. and Saeger, S. D. (2018). Capacitive sensor for detection of benzo(a)pyrene in water. Talanta, 190: 219 – 225.

22.    Li, X., Kaattari, S. L., Vogelbein, M. A., Vadas, G. G. and Unger, M. A. (2016). A highly sensitive monoclonal antibody based biosensor for quantifying 3-5 ring polycyclic aromatic hydrocarbons (PAHs) in aqueous environmental samples. Sensing and Bio-Sensing Research, 7: 115 – 120.

23.    Wang, C., Lin, M., Liu, Y. and Lei, H. (2011). A dendritic nanosilica-functionalized electrochemical immunosensor with sensitive enhancement for the rapid screening of benzo[a]pyrene. Electrochimica Acta, 56: 1988 – 1994.

24.    Ronkainen-Matsuno, N. J., Thomas, J. H., Halsall, H. B. and Heineman, W. R. (2002). Electrochemical immunoassay moving into the fast lane. Trends in Analytical Chemistry, 21(4): 213 – 225.

25.    USEPA (1995). Method 525.2: Determination of Organic Compounds in Drinking Water by Liquid-Solid Extraction and Capillary Column Gas Chromatography/Mass Spectrometry, Revision 2.0. Cincinnati, OH: USA.

26.    Jusoh, N. S., Azmi, A. A. and Ahmad, A. (2017). Enzyme-linked immunosorbent assay (ELISA)-based-sensor for determination of benzo[a]pyrene in river water using screen-printed gold electrode. Malaysian Journal of Analytical Science, 21(3): 518 – 526.

27.    Ahmad, A., Lee, P. K. and Jusoh, N. S. (2016). A comparative study of thiols self-assembled monolayers on gold electrode. Middle-East Journal of Scientific Research, 24 (6): 2152 – 2158.

28.    Ahmad, A. and Moore, E. J. (2012). Electrochemical immunosensor modified with self-assembled monolayer of 11-mercaptoundecanoic acid on gold electrodes for detection of benzo[a]pyrene. Analyst, 137: 5839 – 5944.

29.    Heins, M., Heil, W. and Withold, W. (1995). Storage of serum or whole blood samples: Effects of time and temperature on 22 serum analytes. European Journal of Clinical Chemistry Clinical Biochemistry, 33 (4): 231 – 238.

30.    Cray, C., Rodriguez, M., Zaias, J. and Altman, N. H. (2009). Effects of storage temperature and time on clinical biochemical parameters from rat serum. Journal of the American Association for Laboratory Animal Science, 48 (2): 202 – 204.

31.    Divya, P. D. and Jayavardhanan, K. K. (2010). Effect of temperature and storage time on Hepatobiliary enzyme activities in Goat serum. Veterinary World, 3(6): 277 – 279.

32.    Cosby, C. N., Troiano, N. W. and Kacena, M. A. (2008). The effects of storage conditions on the preservation of enzymatic activity in bone. Journal of Histotechnology, 31(4): 169 – 173.

33.    McGowin, A. E. (2006). Polycyclic aromatic hydrocarbons: Chromatographic analysis of the environment. CRC Press, Florida. pp. 555 – 616.

 

 




Previous                    Content                    Next