Malaysian Journal of Analytical Sciences Vol 23 No 5 (2019): 839 - 848

DOI: 10.17576/mjas-2019-2305-09

 

 

 

REMOVAL OF PHTHALATES IN AQUEOS SAMPLES USING NON-IONIC SILICONE SURFACTANT MEDIATED CLOUD POINT EXTRACTION VIA SPECTROPHOTOMETRY

 

(Penyingkiran Ftalat dalam Sampel Akues Menggunakan Teknik Pengekstrakan Titik Awan Surfaktan Silikon Tidak Berionik dengan Spektrofotometri)

 

Pei Wan Ooi1, Muggundha Raoov Ramachandran2, Noorfatimah Yahaya1, Nik Nur Syazni Mohamed Kamal1, Kasturi Gopal1, Nor Aniisah Husin1, Nur Nadhirah Mohamad Zain1*

 

1Integrative Medicine Cluster, Advanced Medical and Dental Institute,

Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia

2Department of Chemistry, Faculty of Science,

Universiti Malaya, 50603 Kuala Lumpur, Malaysia

 

*Corresponding author:  nurnadhirah@usm.my

 

 

Received: 16 April 2019; Accepted: 29 July 2019

 

 

Abstract

Removal of phthalates in environmental compartments become crucial in recent years due to the growing global concern about the health effects of phthalates. In this study, a greener method based on cloud point extraction procedure was developed for the removal of selected phthalates in environmental samples using non-ionic silicone surfactant (DC193C). The parameters affecting the extraction efficiency, such as the surfactant concentration, salt types, salt concentration, temperature and incubation time were evaluated and optimized. Good linearity with correlation coefficients (R2) in the range of 0.9963 – 0.9988 for all calibration curves was obtained. The proposed method was applied in removing the diethhylhexyl phthalate and dibutyl phthalate in river water samples under optimized conditions with satisfactory recoveries in the range of 82 – 98%.

 

Keywords:  cloud point extraction, non-ionic silicone surfactant, phthalates, spectrophotometry

 

Abstrak

Penyingkiran ftalat dalam alam sekitar menjadi satu isu yang penting kebelakangan ini disebabkan peningkatan kesedaran global mengenai kesan-kesan ftalat terhadap kesihatan. Dalam kajian ini, satu teknik pengekstrakan titik awan yang lebih mesra alam telah dibangunkan untuk penyingkiran ftalat tertentu daripada sampel alam sekitar dengan menggunakan surfaktan silikon tidak berionik DC193C. Faktor-faktor yang mempengaruhi kecekapan pengekstrakan seperti kepekatan surfaktan, jenis garam, kepekatan  garam, suhu dan masa keseimbangan telah dikaji dan dioptimumkan. Kelinearan baik dengan pekali korelasi (R2) dalam julat 0.9963 – 0.9988 telah dicapai untuk semua lengkung tara. Kaedah yang dicadangkan telah digunakan untuk penyingkiran dietilheksil ftalat dan dibutil ftalat dalam sampel alam sekitar yang telah dipilih di bawah keadaan yang optimum dengan perolehan semula yang memuaskan dalam julat 82 – 98 %.

 

Kata kunci:  pengekstrakan titik awan, surfaktan silikon tidak berionik, ftalat, spektrofotometri

 

References

1.          Pérez-Outeiral, J., Millán, E. and Garcia-Arrona, R. (2016). Determination of phthalates in food simulants and liquid samples using ultrasound-assisted dispersive liquid–liquid microextraction followed by solidification of floating organic drop. Food Control, 62: 171-177.

2.          Mariana, M., Feiteiro, J., Verde, I., and Cairrao, E. (2016). The effects of phthalates in the cardiovascular and reproductive systems: A review. Environment International, 94: 758-776.

3.          Chen, B. and Zhang, L. (2013). An easy and sensitive analytical method of determination of phthalate esters in children's toys by UPLCMS/MS. Polymer Testing, 32(4): 681-685.

4.          Zhang, L., Dong, L., Ren, L., Shi, S., Zhou, L., Zhang, T., and Huang, Y. (2012). Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China. Journal of Environmental Sciences, 24(2): 335-342.

5.          Chen, X., Xu, S., Tan, T., Lee, S. T., Cheng, S. H., Lee, F. W. F., and Ho, K. C. (2014). Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures. International Journal of Environmental Research and Public Health, 11(3): 3156-3168.

6.          Koch, H. M. and Calafat, A. M. (2009). Human body burdens of chemicals used in plastic manufacture. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526): 2063-2078.

7.          Schecter, A., Lorber, M., Guo, Y., Wu, Q., Yun, S. H., Kannan, K., and Cheng, D. (2013). Phthalate concentrations and dietary exposure from food purchased in New York State. Environmental Health Perspectives, 121(4): 473.

8.          Regulations, U.S.E.P.A. (1980). Ambient water quality criteria for Phthalate Esters. 1980: The Division.

9.          Souza, V.S., Teixeira, L.S. and Bezerra, M.A. (2016). Application of multivariate designs in the development of a method for vanadium determination in natural waters by HR-CS GF AAS after cloud-point extraction. Microchemical Journal, 129: 318-324.

10.        Santalad, A., Burakham, R., Srijaranai, S., Srijaranai, S., and Deming, R. L. (2012). Role of different salts on cloud-point extraction of isoprocarb and promecarb insecticides followed by high-performance liquid chromatography. Journal of Chromatographic Science, 50(6): 523-530.

11.        Soni, S., Panjabi, S. and Sastry, N. (2011). Effect of non-electrolyte additives on micellization and clouding behavior of silicone surfactant in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377(1): 205-211.

12.        Bingjia, Y., Li, Y., Qiong, H., & Shigendo, A. (2007). Cloud point extraction of polycyclic aromatic hydrocarbons in aqueous solution with silicone surfactants. Chinese Journal of Chemical Engineering, 15(4): 468-473.

13.        Ghasemi, E. and Kaykhaii, M. (2016). Application of micro-cloud point extraction for spectrophotometric determination of malachite green, crystal violet and rhodamine B in aqueous samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 164: 93-97.

14.        Zain, N., Abu Bakar, N. and Mohamad, S. (2016). Study of removal of phenol species by adsorption on non-ionic silicon surfactant after cloud point extraction methodology. Desalination and Water Treatment, 57(8): 3532-3543.

15.        Zain, N., Bakar, N. A., Mohamad, S., and Saleh, N. M.  (2014). Optimization of a greener method for removal phenol species by cloud point extraction and spectrophotometry. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118: 1121-1128.

16.        Hollis, G.L. (2007). Surfactants Europa. Royal Society of Chemistry Publishing.

17.        Salem, J. K., El-Nahhal, I. M., Najri, B. A., and Hammad, T. M. (2016). Utilization of surface Plasmon resonance band of silver nanoparticles for determination of critical micelle concentration of cationic surfactants. Chemical Physics Letters, 664: 154-158.

18.        Ren, Y., Zhao, B., Chang, Q., and Yao, X. (2011). QSPR modeling of nonionic surfactant cloud points: An update. Journal of Colloid and Interface Science, 358(1): 202-207.

19.        Samaddar, P. and Sen, K. (2014). Cloud point extraction: A sustainable method of elemental preconcentration and speciation. Journal of Industrial and Engineering Chemistry, 20(4): 1209-1219.

20.        Tang, X., Zhu, D., Huai, W., Zhang, W., Fu, C., Xie, X., and Fan, H. (2017). Simultaneous extraction and separation of flavonoids and alkaloids from Crotalaria sessiliflora L. by microwave-assisted cloud-point extraction. Separation and Purification Technology, 175: 266-273.

21.        Pirdadeh-Beiranvand, M., Afkhami, A. and Madrakian, T. (2017). Cloud point-magnetic dispersive solid phase extraction for the spectrofluorometric determination of citaloperam. Journal of Molecular Liquids, 241: 43-48.

22.        Yang, X., Li, G., Yang, X., Jia, Z., and Luo, N.  (2015). Determination of manganese in environmental samples by UV-Vis after cloud point extraction. 2nd International Conference on Green Materials and Environmental Engineering, 2015: 91-94.

23.        Sato, N., Mori, M. and Itabashi, H. (2013). Cloud point extraction of Cu (II) using a mixture of triton X-100 and dithizone with a salting-out effect and its application to visual determination. Talanta, 2013. 117: 376-381.

24.        Purkait, M., DasGupta, S. and De, S. (2006). Performance of TX-100 and TX-114 for the separation of chrysoidine dye using cloud point extraction. Journal of Hazardous Materials, 137(2): 827-835.

25.        Hunger, J., Neueder, R., Buchner, R., and Apelblat, A. (2013). A conductance study of guanidinium chloride, thiocyanate, sulfate, and carbonate in dilute aqueous solutions: ion-association and carbonate hydrolysis effects. The Journal of Physical Chemistry B, 117(2): 615-622.

26.        Purkait, M., DasGupta, S. and De, S. (2009). Determination of thermodynamic parameters for the cloud point extraction of different dyes using TX-100 and TX-114. Desalination, 244(1-3): 130-138.

27.        Purkait, M. K., Vijay, S. S., DasGupta, S., and De, S. (2004). Separation of congo red by surfactant mediated cloud point extraction. Dyes and Pigments, 63(2): 151-159.

28.        Wang, L., Jiang, G.-B., Cai, Y.-Q., He, B., Wang, Y.-W., and Shen, D.-Z.  (2007). Cloud point extraction coupled with HPLC-UV for the determination of phthalate esters in environmental water samples. Journal of Environmental Sciences, 19(7): 874-878.

 

 




Previous                    Content                    Next