Malaysian
Journal of Analytical Sciences Vol 23 No 5 (2019): 839 - 848
DOI:
10.17576/mjas-2019-2305-09
REMOVAL OF PHTHALATES
IN AQUEOS SAMPLES USING NON-IONIC SILICONE SURFACTANT MEDIATED CLOUD POINT
EXTRACTION VIA SPECTROPHOTOMETRY
(Penyingkiran
Ftalat dalam Sampel Akues
Menggunakan Teknik Pengekstrakan Titik Awan
Surfaktan Silikon Tidak Berionik dengan Spektrofotometri)
Pei Wan Ooi1,
Muggundha Raoov Ramachandran2, Noorfatimah Yahaya1, Nik
Nur Syazni Mohamed Kamal1, Kasturi Gopal1, Nor Aniisah Husin1, Nur
Nadhirah Mohamad Zain1*
1Integrative Medicine Cluster, Advanced Medical and Dental
Institute,
Universiti Sains Malaysia,
13200 Kepala Batas, Penang, Malaysia
2Department of Chemistry, Faculty of Science,
Universiti Malaya, 50603 Kuala
Lumpur, Malaysia
*Corresponding author: nurnadhirah@usm.my
Received: 16 April 2019; Accepted: 29 July 2019
Abstract
Removal
of phthalates in environmental compartments become crucial in recent years due
to the growing global concern about the health effects of phthalates. In this
study, a greener method based on cloud point extraction procedure was developed
for the removal of selected phthalates in environmental samples using non-ionic
silicone surfactant (DC193C). The parameters affecting the extraction
efficiency, such as the surfactant concentration, salt types, salt
concentration, temperature and incubation time were evaluated and optimized.
Good linearity with correlation coefficients (R2) in the range of 0.9963 – 0.9988 for all calibration
curves was obtained. The proposed method was applied in removing the
diethhylhexyl phthalate and dibutyl phthalate in river water samples under
optimized conditions with satisfactory recoveries in the range of 82 – 98%.
Keywords: cloud point extraction, non-ionic silicone
surfactant, phthalates, spectrophotometry
Abstrak
Penyingkiran ftalat dalam alam sekitar menjadi
satu isu yang penting kebelakangan ini disebabkan peningkatan kesedaran global
mengenai kesan-kesan ftalat terhadap kesihatan. Dalam kajian ini, satu teknik
pengekstrakan titik awan yang lebih mesra alam telah dibangunkan untuk
penyingkiran ftalat tertentu daripada sampel alam sekitar dengan menggunakan surfaktan
silikon tidak berionik DC193C. Faktor-faktor yang mempengaruhi kecekapan
pengekstrakan seperti kepekatan surfaktan, jenis garam, kepekatan garam, suhu dan masa keseimbangan telah
dikaji dan dioptimumkan. Kelinearan baik dengan pekali korelasi (R2) dalam julat 0.9963 –
0.9988 telah dicapai untuk semua lengkung tara. Kaedah yang dicadangkan telah
digunakan untuk penyingkiran dietilheksil ftalat dan dibutil ftalat dalam sampel alam sekitar yang telah dipilih di
bawah keadaan yang optimum dengan perolehan semula yang memuaskan dalam julat
82 – 98 %.
Kata kunci: pengekstrakan titik awan, surfaktan silikon
tidak berionik, ftalat, spektrofotometri
References
1.
Pérez-Outeiral,
J., Millán, E. and Garcia-Arrona, R. (2016). Determination of phthalates in
food simulants and liquid samples using ultrasound-assisted dispersive
liquid–liquid microextraction followed by solidification of floating organic
drop. Food Control, 62: 171-177.
2.
Mariana,
M., Feiteiro, J., Verde, I., and Cairrao, E. (2016). The
effects of phthalates in the cardiovascular and reproductive systems: A review.
Environment International, 94:
758-776.
3.
Chen, B. and Zhang, L. (2013). An easy
and sensitive analytical method of determination of phthalate esters in
children's toys by UPLCMS/MS. Polymer
Testing, 32(4): 681-685.
4.
Zhang,
L., Dong, L., Ren, L., Shi, S., Zhou, L., Zhang, T., and Huang, Y. (2012). Concentration
and source identification of polycyclic aromatic hydrocarbons and phthalic acid
esters in the surface water of the Yangtze River Delta, China. Journal of Environmental Sciences,
24(2): 335-342.
5.
Chen, X.,
Xu, S., Tan, T., Lee, S. T., Cheng, S. H., Lee, F. W. F., and Ho, K. C. (2014).
Toxicity and estrogenic endocrine
disrupting activity of phthalates and their mixtures. International Journal of Environmental Research and Public Health,
11(3): 3156-3168.
6.
Koch, H. M. and Calafat, A. M. (2009).
Human body burdens of chemicals used in plastic manufacture. Philosophical Transactions of the Royal
Society B: Biological Sciences, 364(1526): 2063-2078.
7.
Schecter,
A., Lorber, M., Guo, Y., Wu, Q., Yun, S. H., Kannan, K., and Cheng, D.
(2013). Phthalate concentrations and dietary exposure from food purchased in
New York State. Environmental Health
Perspectives, 121(4): 473.
8.
Regulations, U.S.E.P.A. (1980). Ambient
water quality criteria for Phthalate Esters. 1980: The Division.
9.
Souza, V.S., Teixeira, L.S. and Bezerra,
M.A. (2016). Application of multivariate designs in the development of a method
for vanadium determination in natural waters by HR-CS GF AAS after cloud-point
extraction. Microchemical Journal, 129:
318-324.
10.
Santalad,
A., Burakham, R., Srijaranai, S., Srijaranai, S., and Deming, R. L. (2012). Role
of different salts on cloud-point extraction of isoprocarb and promecarb
insecticides followed by high-performance liquid chromatography. Journal of Chromatographic Science,
50(6): 523-530.
11.
Soni, S., Panjabi, S. and Sastry, N.
(2011). Effect of non-electrolyte additives on micellization and clouding
behavior of silicone surfactant in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects,
377(1): 205-211.
12.
Bingjia, Y., Li, Y., Qiong, H., & Shigendo,
A. (2007). Cloud point extraction of polycyclic
aromatic hydrocarbons in aqueous solution with silicone surfactants. Chinese Journal of Chemical Engineering,
15(4): 468-473.
13.
Ghasemi, E. and Kaykhaii, M. (2016).
Application of micro-cloud point extraction for spectrophotometric
determination of malachite green, crystal violet and rhodamine B in aqueous
samples. Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy, 164: 93-97.
14.
Zain, N., Abu Bakar, N. and Mohamad, S.
(2016). Study of removal of phenol species by adsorption on non-ionic silicon
surfactant after cloud point extraction methodology. Desalination and Water Treatment, 57(8): 3532-3543.
15.
Zain, N.,
Bakar, N. A., Mohamad, S., and Saleh, N. M. (2014). Optimization of a greener method for
removal phenol species by cloud point extraction and spectrophotometry. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy, 118: 1121-1128.
16.
Hollis, G.L. (2007). Surfactants Europa.
Royal Society of Chemistry Publishing.
17.
Salem, J.
K., El-Nahhal, I. M., Najri, B. A., and Hammad, T. M. (2016). Utilization
of surface Plasmon resonance band of silver nanoparticles for determination of
critical micelle concentration of cationic surfactants. Chemical Physics Letters, 664: 154-158.
18.
Ren, Y.,
Zhao, B., Chang, Q., and Yao, X. (2011). QSPR
modeling of nonionic surfactant cloud points: An update. Journal of Colloid and Interface Science, 358(1): 202-207.
19.
Samaddar, P. and Sen, K. (2014). Cloud
point extraction: A sustainable method of elemental preconcentration and
speciation. Journal of Industrial and
Engineering Chemistry, 20(4): 1209-1219.
20.
Tang, X.,
Zhu, D., Huai, W., Zhang, W., Fu, C., Xie, X., and Fan, H.
(2017). Simultaneous extraction and separation of flavonoids and alkaloids from
Crotalaria sessiliflora L. by
microwave-assisted cloud-point extraction. Separation
and Purification Technology, 175: 266-273.
21.
Pirdadeh-Beiranvand, M., Afkhami, A. and
Madrakian, T. (2017). Cloud point-magnetic dispersive solid phase extraction
for the spectrofluorometric determination of citaloperam. Journal of Molecular Liquids, 241: 43-48.
22.
Yang, X.,
Li, G., Yang, X., Jia, Z., and Luo, N. (2015). Determination of manganese in
environmental samples by UV-Vis after cloud point extraction. 2nd International Conference on
Green Materials and Environmental Engineering, 2015: 91-94.
23.
Sato, N., Mori, M. and Itabashi, H.
(2013). Cloud point extraction of Cu (II) using a mixture of triton X-100 and
dithizone with a salting-out effect and its application to visual
determination. Talanta, 2013. 117:
376-381.
24.
Purkait, M., DasGupta, S. and De, S.
(2006). Performance of TX-100 and TX-114 for the separation of chrysoidine dye
using cloud point extraction. Journal of
Hazardous Materials, 137(2): 827-835.
25.
Hunger,
J., Neueder, R., Buchner, R., and Apelblat, A. (2013). A
conductance study of guanidinium chloride, thiocyanate, sulfate, and carbonate
in dilute aqueous solutions: ion-association and carbonate hydrolysis effects. The Journal of Physical Chemistry B,
117(2): 615-622.
26.
Purkait, M., DasGupta, S. and De, S.
(2009). Determination of thermodynamic parameters for the cloud point
extraction of different dyes using TX-100 and TX-114. Desalination, 244(1-3): 130-138.
27.
Purkait, M. K., Vijay, S. S., DasGupta, S., and
De, S. (2004). Separation of congo red by surfactant
mediated cloud point extraction. Dyes and
Pigments, 63(2): 151-159.
28.
Wang, L.,
Jiang, G.-B., Cai, Y.-Q., He, B., Wang, Y.-W., and Shen, D.-Z. (2007). Cloud point extraction coupled with
HPLC-UV for the determination of phthalate esters in environmental water
samples. Journal of Environmental
Sciences, 19(7): 874-878.