Sains Malaysiana 37(3):  249-253 (2008)

 

Tio2 Nanoparticles Coated With Porphyrin Dye Thin

Film As Fluorescence Gas Sensor

(Nanozarah TiO2 Bersalut Filem Nipis Porifinin Sebagai

Pengesan Gas Pendarflour)

 

 

Nurul Huda Yusoff, Muhamad Mat Salleh

Institute of Microengineering and Nanoelectronics

Universiti Kebangsaan Malayisa, 43600 Bangi, Selangor

Malaysia

 

Muhammad Yahaya

School of Applied Physics, Faculty of Science & Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor

Malaysia

 

 

Received:  12 June 2007/ Accepted: 4 December 2007

 

ABSTRACT

This research explores the possibility of using fluorescence technique to detect the presence of volatile organic compounds based on a single sensing material. The material used was TiO2 nanoparticles coated with porphyrin dye. The TiO2 nanoparticles colloid is in a sol-gel form synthesized from titanium (IV) ethoxide in ethanol with addition of kalium chloride (KCl) as stabilizer. TiO2 nanoparticles were then coated with porphyrin dye, Manganase (III) 5,10,15,20 tetra (4-pyridyl)-21H, 23H porphine chloride tetrakis (metachloride). The coated nanoparticles were deposited on quartz substrate using self-assembly through dip coating technique. The sensing properties of the thin film toward volatile organic compounds; ethanol, acetone, cyclohexane and 2-propanol were studied using luminescence spectrometer. It was found that the thin film produced different emission spectra peaks for different volatile organic compounds (VOCs). Hence, it eases  chemical identification process and potentially be use as fluorescence gas sensor.

 

Keywords: TiO2 nanoparticles; porphyrin dye; volatile organic compounds; self-assembly; fluorescence gas sensor.

 

 

ABSTRAK

 

Kajian ini mengkaji kebarangkalian menggunakan teknik pendaflour untuk mengesan kehadiran sebatian organik meruap menggunakan sejenis bahan penderia. Bahan yang digunakan adalah TiO2 nanozarah bersalut porfirin. Larutan sol gel TiO2 nanozarah disintesis dari titanium (IV) ethoxide dalam ethanol dengan tambahab kalium chlorida (KCl) sebagai  bahan pentabil. TiO2 nanozarah kemudiannya disalut  dengan pencelup porfirin; manganase (III) 5,10,15,20 tetra (4-pyridyl)-21H, 23H porphine chlorida tetrakis (metachloride). Nanozarah yang telah disalut ini dimendapkan di atas substrat kuartza secara swa-melekat menggunakan teknik celupan. Teknik penderiaan filem nipis ini terhadap sebatian organik meruap; etanol, aseton, siklo hexana dan 2-propanol dikaji menggunakan spektrometer Luminesen. Hasilnya mendapati, filem nipis ini menghasilkan spektrum pancaran cahaya yang berlainan setiap kali didedahkan kepada sebatian organik meruap yang berlainan. Maka dengan ini, filem nipis ini dapat digunakan untuk proses pengecaman kimia dan berpotensi diguna sebagai penderia gas pendarflour.

 

Kata kunci: nanozarah TiO2; porfirin; sebatian organic meruap; swa melekat; penderia gas pendarflour.

 

REFERENCES/RUJUKAN

 

Akrajas, Salleh. M. M. & Yahaya, M. 2002. Enriching the selectivity of metalloporphyrins chemicals sensors by means of optical technique, Sensor and Actuators B. 85: 191-196.

Assmann, S. E., Widoniak, J., & Maret, G. 2004.  Synthesis and characterization of porous and nonporous monodisperse colloid TiO2 particles, Chem. Mater 16: 6-11.

Boron, M.G., Narayanaswamy, R. & Thorpe, S.C. 1993. Luminescence porphyrin thin film for NOX sensing, Sensors and Actuators B 11: 195-199.

Boron, M.G., Narayanaswamy, R., & Thorpe, S. C. 1995. A kineto-optical method for the determination of chlorine gas, Sensors and Actuators B 29: 358-362.

Brandenburg, A., Edelhauser, R. & Hutter, F. 1993. Integrated optical gas sensor using organically modified silicates as sensitive films, Sens. Actuator B 11: 361-374.

Brook, T.E., & Narayanaswamy, R. 1997. Immobilization of ruthenium tris-biphyridyl complex for chlorine gas detection, Sensors and Actuators B 38-39: 195-20.

Hong, S.W., Kim, K.H., Huh, J., Ahn, C. H.,& Jo, W.H. 2005. Design and synthesis of a new pH sensitive polymeric sensor using fluorescence resonance energy transfer, Chemistry of Materials, (25): 6213-6215.

Kim, M.S., Lefcourt, A.M., & Chen, Y. R. 2004. Multispectral fluorescence imaging technique for nondestructive food safety inspection, Proceedings of SPIE - The International Society for Optical Engineering  5271: 62-72.

Krecicka, M.Z., Krecicki, T., Fraczek, M., Pawlik, E.B. & Zatonski, T. 2005. Autofluorescence laryngoscopy in the diagnosis of laryngeal cancer-early results, Otolaryngologia polska. The Polish otolaryngology, 59, 2: 195-199.

Razek, T.M.A., Miller, M. J., Hassan, S.S.M., & Arnold, M. A. 1999. Optical sensor for sulfur dioxide based on fluorescence quenching, Talanta 50: 491–498.

Sasaki, D. Y., Singh, S., Cox, J. D., &Pohl, P.I. 2001. Fluorescence detection of nitrogen dioxide with perylene/PMMA thin films, Sensors and Actuators B 72: 51-55.

Tanaka, T., Guilleux, A., Ohyama, T., Maruo, Y.Y. & Hayashi, T. 1999. A ppb-level NO2 gas sensor using coloration reaction in porous glass, Sens. Actuator B 56: 247-253.

Vukusic, P.S. & Samble, J.R. 1992. Cobalt phthalocyanine as basis for the optical sensing of nitrogen dioxide using surface plasmon resonance, Thin Solid Film 221: 311-317.

 

 

 

previous