Sains Malaysiana 37(3): 255-259(2008)

 

Gallium Nitride: A Nanoscale Study using Electron

Microscopy and Associated Techniques

(Galium Nitrida: Kajian Skala Nano Menggunakan Mikroskop

Elektron dan Teknik-Teknik Berkaitan)

 

 

Mohammed Benaissa

CNRST, 52, Bd Omar Ibn Khattab

B.P. 8027, Agdal, 10102 Rabat, Morocco

 

Philippe Vennéguès

CNRS-CRHEA, Rue Bernard Grégory

06560 Valbonne, France

 

Received:  12 June 2007 / Accepted: 18 September 2007

 

 

ABSTRACT

 

A complete nanoscale study on GaN thin films doped with Mg. This study was carried out using TEM and associated techniques such as HREM, CBED, EDX and EELS. It was found that the presence of triangular defects (of few nanometers in size) within GaN:Mg films were at the origin of unexpected electrical and optical behaviors, such as a decrease in the free hole density at high Mg doping. It is shown that these defects are inversion domains limited with inversion-domains boundaries.

 

Keywords: Electron microscopy; Mg; GaN

 

 

ABSTRAK

 

Kajian skala nano yang lengkap film nipis GaN yang didop dengan Mg dilaporkan. Kajian telah dijalankan menggunakan TEM dan teknik-teknik berkaitan seperti HREM, CBED, EDX dan EELS.  Didapati kehadiran kecacatan segi tiga (dengan saiz beberapa nanometer)  dalam GaN:Mg merupakan punca kepada sifat elektrik yang tidak dijangka, seperti penurunan ketumpatan lohong bebas pada pengedopan Mg yang tinggi. Kecacatan ini adalah domain songsangan yang dihadkan oleh sempadan domain songsang.

 

Kata kunci:  Mikroskopi elektron; Mg; GaN

 

 

REFERENCES/RUJUKAN

 

Grandjean N., Dussaigne A., Pezzagna S., & Vennéguès P., 2003. Control of the polarity of GaN films using an Mg adsorption layer, J. Cryst. Growth 251: 460-464.

Götz W., Johnson N.M., Walker J., Bour D.P., & Street R.A., 1996. Local vibrational modes of the Mg–H acceptor complex in GaN, Appl. Phys. Lett. 69: 3725-3727.

Egerton R.F., 1989. Electron Energy Loss Spectroscopy in the Electron Microscope, NY: Plenum Press.

Inokuti M., 1971. Inelastic Collisions of Fast Charged Particles with Atoms and Molecules—The Bethe Theory Revisited, Rev. Mod. Phys. 43: 297-347. 

Kaeding J. F., Asamizu H., Sato H., Iza M., Mates T. E., DenBaars S. P., Speck J. S., & Nakamura S., 2006. Realization of high hole concentrations in Mg doped semipolar (10-1-1) GaN, Appl. Phys. Lett. 89:  art no. 202104.

Kaufmann U., Kunzer M., Maier M., Obloh H., Ramakrishnan A., Santic B., & Schlotter P., 1998.  Nature of the 2.8 ev photo-luminescence band in Mg doped GaN, Appl. Phys. Lett. 72: 1326-1328.

Kaufmann U., Schlotter P., Obloh H., Köhler K., & Maier M., 2000. Hole conductivity and compensation in epitaxial GaN:Mg layers, Phys. Rev. B 62: 10867-10872.

Lambrecht W. R. L., Rashkeev S. N., Segall B., Lawniczak-Jablonska K., Suski T., Gullikson E. M., Underwood J. H., Perera R. C. C., Rife J. C., Grzegory I., Porowski S., & Wickenden D. K., 1997. X-ray absorption, glancing-angle reflectivity, and theoretical study of the N K- and Ga M2,3-edge spectra in GaN, Phys. Rev. B 55: 2612-2622.

Leroux M., Grandjean N., Beaumont B., Nataf G., Semond F., Massies J., & Gibart P., 1999. Temperature quenching of photoluminescence intensities in undoped and doped GaN,  J. Appl. Phys. 86: 3721-3728.

Nakamura S. & Fasol G., 1997. The Blue Laser Diode, Berlin: Springer.

Northrup, J.E. 2003.  Magnesium incorporated at (001) inversion domain boundaries in GaN. Appl. Phys. Lett. 82:  2278-2280.

Oh E., Park H., & Park Y., 1998. Influence of potential fluctuation on optical and electrical properties in GaN, Appl. Phys. Lett. 72: 1848-1850.

Romano L. T., Kneissi M., Northrup J. E., Van de Walle C. G., & Treat D. W., 2001. Influence of microstructure on the carrier concentration of Mg-doped GaN films, Appl. Phys. Lett. 79: 2734-2736.

Simbrunner C., Wegscheider M., Quast M., Li T., Navarro-Quezada A., Sitter H., Bonanni A., & Jakiela R., 2007. On the effect of periodic Mg distribution in GaN: -Mg,  Appl. Phys. Lett. 90: art. no. 142108.

Romano L. T., Kneissi M., Northrup J. E., Van de Walle C. G., & Treat D. W., 2001. Influence of microstructure on the carrier concentration of Mg-doped GaN films, Appl. Phys. Lett. 79: 2734-2736.

Simbrunner C., Wegscheider M., Quast M., Li T., Navarro-Quezada A., Sitter H., Bonanni A., & Jakiela R., 2007. On the effect of periodic Mg distribution in GaN: -Mg,  Appl. Phys. Lett. 90: art. no. 142108.

Smith M., Chen G. D., Lin J. Y., Jiang H. X., Salvador A., Sverdlov B. N., Botchkarev A., Morkoc H.¸ & Goldenberg B., 1996. Mechanisms of band-edge emissions in Mg-doped p-type GaN. Appl. Phys. Lett. 68: 1883-1885.

Sun Q., Selloni A., Myers T. H., & Alan Doolittle W., 2006. Energetics of Mg incorporation at GaN(0001) and GaN(000-1) surfaces, Phys. Rev. B 74: art no. 155337.

Vennéguès P., Benaissa M., Beaumont B., Feltin E., De Mierry P., Dalmasso S., Leroux M., & Gibart P., 2000. Pyramidal defects in metalorganic vapor phase epitaxial Mg doped GaN, Appl. Phys. Lett. 77:  880-882.

Vennéguès P., Leroux M., Dalmasso S., Benaissa M., De Mierry P., Lorenzini P., Damilano B., Beaumont B., Massies J., & Gibart P., 2003. Atomic structure of pyramidal defects in Mg-doped GaN, Phys. Rev. B 68: art 2352141-2352148.

 

 

 

previous