Sains Malaysiana 40(4)(2011): 385–389
The Fekete-Szegö Theorem for a Certain Class of Analytic Functions
(Teorem Fekete-Szegö Bagi Suatu Kelas Fungsi Analisis)
Ma`Moun Harayzeh Al-Abbadi & Maslina Darus*
School of Mathematical Sciences, Faculty
of Science and Technology
Universiti Kebangsaan Malaysia, Bangi 43600
Selangor D.E., Malaysia
Received: 9 December 2009 / Accepted:
18 July 2010
ABSTRACT
In this paper, we discuss a well known
class studied by many authors including Ramesha et
al. and Janteng, few to mention. Next, we extend the class to a wider
class of functions f denoted by
, which are normalized and univalent, in
the open unit disk D={z:|z|<1} satisfying the condition:
where g ∈ S* (b),g(z) ≠ 0 is a normalized starlike function of order b, for 0 ≤ b < 1. For f ∈
we shall obtain sharp upper bounds for
the Fekete-Szegö functional |a3 – μ
| when μ is real.
Keywords: Close-to-convex functions; convex functions; Fekete-Szegö theorem; starlike functions; univalent functions
ABSTRAK
Dalam kertas kerja ini, kelas yang terkenal yang dikaji oleh ramai penulis akan dibincangkan, termasuklah beberapa nama seperti Ramesha et al. dan Janteng. Seterusnya, kelas ini diperluaskan kepada kelas fungsi f dilambangkan oleh
, yang ternormal dan univalen dalam
cakera unit terbuka D={z:|z|<1} memenuhi syarat:
yang g ∈ S* (b),g(z) ≠ 0 adalah fungsi bak-bintang ternormal peringkatb, (0 ≤ b < 1). Untuk f ∈ uab batas atas terbaik bagi fungsian Fekete-Szegö |a3 – μ
| diperoleh apabila μ adalah nyata.
Kata kunci: Fungsi bak-bintang; fungsi cembung; fungsi hampir cembung; fungsi univalen; teorem Fekete-Szegö
REFERENCES
Akbarally, A. 2001. Beberapa Masalah Pekali dan Subordinasi untuk Fungsi Bak Bintang. MSc Thesis, Universiti Kebangsaan Malaysia, Malaysia.
Darus, M. & Thomas, D.K. 1996. On the Fekete-Szegö theorem for close-to-convex functions. Math. Japonica 44(3): 507-511.
Darus, M. & Thomas, D.K. 2000. The Fekete-Szegö problem for strongly close-to-convex
functions. Scientiae Mathematicae3(2):
201-212.
Darus, M. 2002. The Fekete-Szegö problems for close-to-convex functions of the class Khs(α, β). Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis18(1): 13-18.
Darus, M. & Tuneski,
N. 2003. On the Fekete-Szegö problem for generalized close-to-convex
functions. Inter.Math. Jour. 4(6): 561-568.
Darus, M. & Hong, N.C. 2004. The Fekete-Szegö problem for strongly close-to-convex functions
with Hadamard product. Far
East J. Math. Sci. (FJMS) 15(1): 1-7.
Fekete, M. & Szegö,
G. 1933. Eine Bermerkung über ungerade schlichte function. J. Lond. Math. Soc. 8: 85-89.
Frasin, B.A. & Darus,
M. 2003. On the Fekete- Szegö using the Hadamard product. Internat. Math. J 3(12): 1297-1304.
Ibrahim,
A. & Darus, M. 2001. The Fekete-Szegö theorem for close-to-convex functions: To determine the upper bounds. Jour.
Inst. Math. Comp.Sci. (Math.Ser) 14(3): 207-216.
Janteng, A. 2006. Assortment of
Problems for Certain Classes of Analytic Functions. PhD thesis, University of Malaya, K.L. Malaysia.
Janteng, A. 1999. Beberapa Masalah untuk Fungsi Bak Bintang. MSc thesis, Universiti Kebangsaan Malaysia, Malaysia.
Keogh,
F.R. & Merkes, E.P. 1969. A coefficient inequality for certain
classes of analytic functions. Proc. Amer. Math. Soc. 20: 8-12.
Koepf, W. 1987. On the Fekete-Szegö problem for close-to-convex functions. Proc.
Amer. Math. Soc. 101: 89-95.
Obradovic, M. & Joshi, S.B. 1998. On certain classes of
strongly starlike functions. Taiwanese J. Math
2: 297-302.
Pommerenke, C.H. 1975. Univalent Functions. Göttingen: Vandenhoeck and Ruprecht.
Ramesha, C. Kumar, S. & Padmanabhan,
K.S. 1995. A sufficient condition for starlikeness. Chinese J. Math 23: 167-171.
Rahman, K.A. & Darus,
M. 2001. The Fekete-Szegö problems for close-to-convex functions of the
class Khs(α, β). Jour. Inst. Math. Comp.
Sci.(Math. Ser) 14(3): 171-177.
*Corresponding
authors; email: maslina@ukm.my
|