Sains Malaysiana 41(1)(2012): 121–127
Kesan Rawatan Haba Terhadap Mikrostruktur Katod Berliang Ag2O3-Bi2O3 di atas Substrat Keluli Kalis Karat yang disediakan dengan Kaedah Pengecatan Sluri
(Effect of Heat Treatment on the Microstructure of Porous Ag2O3-Bi2O3 Cathode on Stainless
Steel Substrates Prepared by the Slurry Painting Method)
Dedikarni Panuh, Andanastuti Muchtar*, Norhamidi Muhamad & Wan Ramli Wan Daud
Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E.
Malaysia
Received: 21 April 2011 / Accepted: 7 June 2011
ABSTRACT
The influence of thermal treatment on the microstructure of Ag2O3-Bi2O3 porous cathode on stainless steel substrates has been investigated. The composite cathode material has been successfully deposited on the substrates by the slurry painting method. The cathode was later thermally treated at different temperatures of 400, 500, 600, 700, 800 and 830oC for 1 h in the atmosphere. Thermal analysis of the dried slurry was conducted in order to determine the heating schedule for eliminating the organic components using thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). The TGA and DSC analyses confirmed that the organic component was fully decomposed below 418oC, whereas the formation of the composite cathode oxide phases took place at temperatures beyond 600oC. The microstructure of the thermally treated cathode was determined using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The SEM results showed that the grain size of the cathode increased with increase in temperature during thermal treatment. The X-ray diffraction (XRD) analyses confirmed the presence of δ-Bi2O3 phase on the cathode. The Ag2O3-Bi2O3 cathode deposited on the stainless steel substrates was found to have a porosity of 53%, 51%, 39% and 28% after 1, 2, 3, and 4 coatings, respectively, and upon thermal treatment at 800°C for 1 h.
Keywords: Bismuth oxide; porous cathode; slurry painting method
ABSTRAK
Pengaruh rawatan haba terhadap mikrostruktur katod berliang Ag2O3-Bi2O3 di atas substrat keluli kalis karat telah dikaji. Komposit katod telah diendapkan ke atas substrat dengan menggunakan kaedah pengecatan sluri. Katod yang terhasil dirawat haba pada suhu 400, 500, 600, 700, 800 dan 830oC selama 1 jam dalam tekanan atmosfera. Analisis terma terhadap sluri kering telah dikaji untuk mendapatkan jadual pemanasan bagi penyingkiran komponen organik dengan menggunakan analisis termogravimetri (TGA) dan kalori imbasan kebezaan (DSC). Analisis TGA dan DSC mendapati penyingkiran komponen organik terjadi pada suhu di bawah 418oC dan fasa oksida komposit katod terbentuk pada suhu melebihi 600oC. Mikrostruktur katod terawat haba ditentukan dengan menggunakan mikroskop elektron imbasan (SEM) dan belauan sinar-X (XRD). Keputusan SEM menunjukkan yang saiz ira bagi katod meningkat dengan peningkatan suhu rawatan haba. Analisis pembelauan sinar-X mengesahkan kehadiran fasa δ-Bi2O3 di atas katod. Katod Ag2O3-Bi2O3 yang diendapkan di atas substrat keluli kalis karat dengan proses pengulangan salutan 1, 2, 3, dan 4 kali didapati masing-masing mempunyai keliangan 53%, 51%, 39% dan 28% setelah melalui proses rawatan haba pada suhu 800oC selama 1 jam.
Kata kunci: Bismut oksida; kaedah pengecatan sluri; katod berliang
REFERENCES
Alizadeh, M., Maghsoudipour, A., Mortarzadeh, F., Ahmadi, K. & Saremi, M. 2007. Sintering behaviour of Y2O3 doped Bi2O3 Ceramics. Science of Sintering 39: 215-221.
Azad, A.M., Larose, S. & Akbar, S.A. 1994. Review Bismuth Oxide-based solid electrolytes for fuel cells. Journal of Materials Science 29: 4135-4151.
American Standard Test Method (ASTM) C373-72. t.th. Standard Test Method For Water Absortion, Bulk Density, Porosity, and Apparent Specific Gravity of Fired Whiteware Product. 328-329.
Bohannan, E.W., C. Christopher, Jaynes, M.G. Shumsky, J.K. Barton & J.A. Switzer, 2000. Low-temperature electrodeposition of the high-temperature cubic polymorph of bismuth (III) oxide. Solid State Ionics 31: 97-107.
Camaratta, M. & Wachsman, E. 2007. Silver–bismuth oxide cathodes for IT-SOFCs; Part I-Microstructural instability. Solid State Ionics 178: 1242-1247.
Chang, W. B. & Gyeong, M.C. 2001. The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates. Solid State Ionics 140: 285-292.
Cristie, G.M. & Van Berkel, F.P.F. 1996. Microstructure-ionic conductivity relationships in ceria-gandolina electrolytes. Solid State Ionics 83: 17-27.
Deseure, J., Bultel, Y., Dessemond, L. & Siebert, E. 2005. Theoretical optimisation of a SOFC composite cathode. Electrochimica Acta 50: 2037-2046.
Grunbaum, N., Dessemond, L., Fouletier, J., Prado, F. & Caneiro, A. 2006. Electrode reaction of Sr1-xLaxCo0.8Fe0.2O3-δ with x=1 and 0.6 on Ce0.9Gd0.1O1.95 at 600≤ T ≤8000C. Solid State Ionics 178: 1379-1384.
Harwig, H.A. & Gerards, A.G. 1978. Electrical properties of the α, β, and δ phases of bismuth sesquioxide. Journal of Solid State Chemistry 26: 265-274.
Helfen, A., Merkourakis, S., Wang, G., Walls, M.G. & Roy, E. 2005. Structure and stability studies of electrodeposited δ-Bi2O3 Solid State Ionics 176: 629-633.
Kakac, S., Pramuanjaroenkij, A. & Zhou, X. Y. 2007. A Review of numerical modeling of solid oxide fuel cells. International Journal of Hydrogen Energy 32: 761-786.
Laurent, G.Y., Wang. S., Tusseau-Nenez. & Y. Leprince-Wang. 2008. Structure and conductivity studies of electrodeposited δ-Bi2O3. Solid State Ionics 178: 1735-1739.
Li, G., Sun, Z., Zhao, H., Chen, C. & Ren, R. 2007. Effect of temperature on the porosity, microstructure, and properties of porous La0.8Sr0.2MnO3 cathode materials. Ceramics International 33: 1503-1507.
Noor Ashrina Abdul Hamid., Andanastuti Muchtar., Wan Ramli Wan Daud & Norhamidi Muhamad. 2009. Pencirian mikrostruktur katod La-Sr-Co-Fe-O bagi Sel Fuel Oksida Pejal Bersuhu Sederhana (IT-SOFC). Sains Malaysiana 38: 857-861.
Prabhakar, S. & Nguyen, Q.M. 2004. Solid Oxide Fuel Cells: Technology Status. International Journal Applied Ceramic Technology 1: 5-15.
Sammes, N.M., Tompsett, G.A., Nafe, H. & Aldinger, F. 1999. Bismuth Based Oxide Electrolytes-Structure and Ionic Conductivity. Journal of the European Ceramic Society 19: 1801-1826.
*Corresponding author; email: muchtar@eng.ukm.my
|