Sains Malaysiana 42(7)(2013): 981–987
Modeling Repairable System Failure with Repair History
and Covariates
(Model Sistem Kegagalan Dibaiki dengan Sejarah Pembaikan dan Kovariat)
Samira Ehsani*
Department of Mathematics, Faculty of Science, University
Putra Malaysia
43400, Serdang, Selangor D.E. Malaysia
Jayanthi Arasan &
Noor Akma Ibrahim
Laboratory
of Computational Statistics and Operations Research, Institute for Mathematical
Research
University Putra Malaysia, 43400, Serdang,
Selangor D.E. Malaysia
Received: 4 March 2010/Accepted: 2 February 2013
ABSTRACT
In this paper, we extended a repairable system model under general
repair that is based on repair history, to incorporate covariates. We
calculated the bias, standard error and RMSE of the parameter estimates of this model
at different sample sizes using simulated data. We applied the model to a real
demonstration data and tested for existence of time trend, repair and covariate
effects. Following that we also conducted a coverage probability study on the
Wald confidence interval estimates. Finally we conducted hypothesis testing for
the parameters of the model. The results indicated that the estimation
procedure is working well for the proposed model but the Wald interval should
be applied with much caution.
Keywords: Covariate; general repair; repairable system
ABSTRAK
Dalam kertas ini, kami melanjutkan model sistem dibaiki di bawah pembaikan am yang berdasarkan sejarah pembaikan, dengan menggabungkan kovariat. Kami mengira ralat, sisihan piawai dan PMRKD bagi penganggar parameter-parameter model ini pada sampel yang berbeza saiz dengan menggunakan data simulasi. Kami menguna pakai model ini kepada data demonstration sebenar dan telah menguji kewujudan kecenderungan masa, kesan pembaikan dan kovariat. Berikutan itu kami juga menjalankan kajian liputan kebarangkalian bagi anggaran selang keyakinan ‘Wald’. Akhirnya kami menjalankan pengujian hipotesis bagi parameter-parameter model. Keputusan yang diperoleh menunjukkan bahawa prosedur penganggaran berjalan lancar bagi model yang dicadangkan tetapi selang ‘Wald’ harus digunakan dengan berhati-hati.
Kata kunci: Kovariat; perbaikan umum; sistem diperbaiki
REFERENCES
Arasan, J. & Lunn,
M. 2008.Alternative interval estimation for parameters of bivariate exponential
model with time varying covariate. Computational
Statistics 23: 605-622.
Arasan, J. & Lunn,
M. 2009. Survival model of a
parallel system with dependent failures and time varying covariates. Journal
of Statistical Planning and Inference 139(3): 944-951.
Brown, C.C. 1975. On the use of indicator variables for
studying the time-dependence of parameters in a response-time model.Biometrics 31:
863-872.
Cox, D.R. 1972. The statistical analysis of dependencies in point
processes. In Stochastic Point Processes, edited by Lewis, P.A.W. New
York: Wiley.
Cox, D.R. & Lewis, P.A.W. 1966. The Statistical Analysis of Series of
Events. London: Methuen Press.
Crow, L.H. 1974. Reliability analysis for
complex, repairable systems. In Reliability and Biometry, edited
by Proschan, F. & Serfling,
R.J. Philadelphia, PA: SIAM: 379-410.
Gasmi, S., Love, C.E. & Kahle, W.
2003. Ageneral repair, proportional-hazards, framework to model complex
repairable systems. IEEE Transactions on
Reliability 52(1): 26-32.
Guo, H.R., Liao, H., Zhao, W. & Mettas,
A. 2007. Anew stochastic model for systems under
general repairs. IEEE Transactions on Reliability 56(1):
40-49.
Høyland, A. & Rausand,
M. 1994. System
Reliability Theory. New York: Wiley Press.
Kaminskiy, M.P. & Krivtsov, V.V. 1998. AMonte Carlo
approach to repairable system reliability analysis. In Probabilistic
Safety Assessment and Management, edited by Mosleh,
A. & Bari, R.A. New York: Springer.
Kijima, M. 1989. Some results for repairable systems with general repair. Journal
of Applied Probability 26: 89-102.
Kijima, M. & Sumita, U. 1986. Auseful generalization of renewal theory: Counting
processes governed by non-negative Markovian increments. Journal of Applied Probability 23: 71-88.
Lawless, J.F. & Thiagarajah,
K. 1996. Apoint-process model incorporating renewals and time trends, with
application to repairable systems. Technometrics 38(2): 131-138.
Røstum, J. 2000. Statistical Modeling of Pipe
Failures in Water Networks. PhD thesis, Norwegian
University of Science and Technology (unpublished).
Vlok, P.J., Wnek,
M. & Zygmunt, M. 2004. Utilising statistical residual
life estimates of bearings to quantify the influence of preventive maintenance
actions. Mechanical Systems and Signal Processing 18(4): 833-847.
Wang, H. & Pham, H. 1996. Optimal age-dependent
preventive maintenance policies with imperfect maintenance.International Journal of
Reliability, Quality and Safety Engineering 3(2): 119-135.
Yañez, M., Joglar,
F. & Modarres, M. 2002. Generalized renewal process for analysis of repairable
systems with limited failure experience. Reliability Engineering &
System Safety 77(2): 167-180.
*Corresponding
author; email: ehsani_samira@yahoo.com
|