Sains Malaysiana 42(7)(2013): 981–987

 

Modeling Repairable System Failure with Repair History and Covariates

(Model Sistem Kegagalan Dibaiki dengan Sejarah Pembaikan dan Kovariat)

 

Samira Ehsani*

Department of Mathematics, Faculty of Science, University Putra Malaysia

43400, Serdang, Selangor D.E. Malaysia

 

Jayanthi Arasan & Noor Akma Ibrahim

Laboratory of Computational Statistics and Operations Research, Institute for Mathematical Research

University Putra Malaysia, 43400, Serdang, Selangor D.E. Malaysia

 

Received: 4 March 2010/Accepted: 2 February 2013

 

ABSTRACT

In this paper, we extended a repairable system model under general repair that is based on repair history, to incorporate covariates. We calculated the bias, standard error and RMSE of the parameter estimates of this model at different sample sizes using simulated data. We applied the model to a real demonstration data and tested for existence of time trend, repair and covariate effects. Following that we also conducted a coverage probability study on the Wald confidence interval estimates. Finally we conducted hypothesis testing for the parameters of the model. The results indicated that the estimation procedure is working well for the proposed model but the Wald interval should be applied with much caution.

 

Keywords: Covariate; general repair; repairable system

 

ABSTRAK

Dalam kertas ini, kami melanjutkan model sistem dibaiki di bawah pembaikan am yang berdasarkan sejarah pembaikan, dengan menggabungkan kovariat. Kami mengira ralat, sisihan piawai dan PMRKD bagi penganggar parameter-parameter model ini pada sampel yang berbeza saiz dengan menggunakan data simulasi. Kami menguna pakai model ini kepada data demonstration sebenar dan telah menguji kewujudan kecenderungan masa, kesan pembaikan dan kovariat. Berikutan itu kami juga menjalankan kajian liputan kebarangkalian bagi anggaran selang keyakinan ‘Wald’. Akhirnya kami menjalankan pengujian hipotesis bagi parameter-parameter model. Keputusan yang diperoleh menunjukkan bahawa prosedur penganggaran berjalan lancar bagi model yang dicadangkan tetapi selang ‘Wald’ harus digunakan dengan berhati-hati.

 

Kata kunci: Kovariat; perbaikan umum; sistem diperbaiki

REFERENCES

Arasan, J. & Lunn, M. 2008.Alternative interval estimation for parameters of bivariate exponential model with time varying covariate. Computational Statistics 23: 605-622.

Arasan, J. & Lunn, M. 2009. Survival model of a parallel system with dependent failures and time varying covariates. Journal of Statistical Planning and Inference 139(3): 944-951.

Brown, C.C. 1975. On the use of indicator variables for studying the time-dependence of parameters in a response-time model.Biometrics 31: 863-872.

Cox, D.R. 1972. The statistical analysis of dependencies in point processes. In Stochastic Point Processes, edited by Lewis, P.A.W. New York: Wiley.

Cox, D.R. & Lewis, P.A.W. 1966. The Statistical Analysis of Series of Events. London: Methuen Press.

Crow, L.H. 1974. Reliability analysis for complex, repairable systems. In Reliability and Biometry, edited by Proschan, F. & Serfling, R.J. Philadelphia, PA: SIAM: 379-410.

Gasmi, S., Love, C.E. & Kahle, W. 2003. Ageneral repair, proportional-hazards, framework to model complex repairable systems. IEEE Transactions on Reliability 52(1): 26-32.

Guo, H.R., Liao, H., Zhao, W. & Mettas, A. 2007. Anew stochastic model for systems under general repairs. IEEE Transactions on Reliability 56(1): 40-49.

Høyland, A. & Rausand, M. 1994. System Reliability Theory. New York: Wiley Press.

Kaminskiy, M.P. & Krivtsov, V.V. 1998. AMonte Carlo approach to repairable system reliability analysis. In Probabilistic Safety Assessment and Management, edited by Mosleh, A. & Bari, R.A. New York: Springer.

Kijima, M. 1989. Some results for repairable systems with general repair. Journal of Applied Probability 26: 89-102.

Kijima, M. & Sumita, U. 1986. Auseful generalization of renewal theory: Counting processes governed by non-negative Markovian increments. Journal of Applied Probability 23: 71-88.

Lawless, J.F. & Thiagarajah, K. 1996. Apoint-process model incorporating renewals and time trends, with application to repairable systems. Technometrics 38(2): 131-138.

Røstum, J. 2000. Statistical Modeling of Pipe Failures in Water Networks. PhD thesis, Norwegian University of Science and Technology (unpublished).

Vlok, P.J., Wnek, M. & Zygmunt, M. 2004. Utilising statistical residual life estimates of bearings to quantify the influence of preventive maintenance actions. Mechanical Systems and Signal Processing 18(4): 833-847.

Wang, H. & Pham, H. 1996. Optimal age-dependent preventive maintenance policies with imperfect maintenance.International Journal of Reliability, Quality and Safety Engineering 3(2): 119-135.

Yañez, M., Joglar, F. & Modarres, M. 2002. Generalized renewal process for analysis of repairable systems with limited failure experience. Reliability Engineering & System Safety 77(2): 167-180.

 

 

*Corresponding author; email: ehsani_samira@yahoo.com

 

 

 

previous