Sains Malaysiana 42(7)(2013):
989–997
Lengkung Peralihan Licin dengan Kuartik Bezier Satahan
(Smooth Transition Curve by Planar Bezier Quartic)
Azhar
Ahmad
Fakulti
Sains Dan Matematik, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim,
Perak,
Malaysia
Jamaludin
Md Ali
Sekolah
Sains Matematik, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang
Malaysia
Received:
21 July 2011/Accepted: 10 February 2013
ABSTRAK
Kertas ini membincangkan satu keluarga lengkung
peralihan satahan licin yang dibina menggunakan dua lingkaran kuartik Bezier. Lingkaran kuartik yang
diperkenalkan ini mempunyai enam darjah kebebasan yang memberi kelebihan untuk
mempelbagaikan rupa bentuk lingkaran di dalam selangnya. Kelicinan adalah dirujuk melalui ciri-ciri keselanjaran geometri G2 dan kelengkungan monoton
yang dimiliki oleh sesuatu lengkung peralihan. Oleh sebab lengkungan ini
tidak memiliki sebarang juring, gelung dan titik lengkok balas, di samping
tanpa perubahan kelengkungan yang mendadak maka ia amat sesuai untuk aplikasi
tertentu dalam Reka Bentuk Berbantukan Komputer (RBK) bagi memenuhi
keperluan estatis serta kepentingan fungsinya seperti reka bentuk produk
industri, trajektori robot tidak holonomi dan juga reka bentuk mendatar
landasan kereta api serta lebuh raya. Sebagai suatu
perwakilan polinomial, lingkaran kuartik Bezier ini mampu digabungjalinkan ke
dalam sistem RBK yang kebanyakannya berasaskan perwakilan NURBS (nonuniform rational B-splines).
Kata kunci: Kelengkungan monoton; lengkung peralihan; lingkaran
kuartik bezier
ABSTRACT
This paper reports on a family of smooth transition curve rendered
by a pair of Bezier quartic spiral. The family of Bezier quartic spiral form which was introduced has six degrees of freedom and
will give advantage on diversity of the transition curve in the given
constraints. Fair curves often referred on geometrical continuity G2 and
monotonically of curvature of the transition curves. Since these curves have no
cusps, loops and the inflection points, and free from abrupt chance of
curvature, therefore it is suitable for some particular application in Computer
Aided Design (CAD)
in terms of aesthetical and functional values, especially in the industrial
products design, trajectory of non-holonomic robot, as well as the horizontal
route designs of railways and highways. Since Bezier quartic spiral is
polynomial, it can be conveniently incorporated in CAD systems in the form
of NURBS (nonuniform
rational B-splines) representation.
Keywords: Bezier quartic spiral; monotone
curvature; transition curve
REFERENCES
Artin, E. 1957. Geometric Algebra. New York: Interscience.
Azhar, A., Gobithasan, R. &
Jamaludin, M.A. 2007. G2 Transition curve using Quartic Bezier Curve. Dlm: Proceeding of CGIV07, Bangkok,
Thailand, 2-5 Ogos.
Farin, G. 1997. Curves and Surfaces for Computer Aided
Geometric Design: A Practical Guide. 4th ed.
New York: Academic Press.
Gibreel, G.M., Easa, S.M., Hassan, Y. & El-Dimeery, I.A.
1999. State of the art of highway geometric design
consistency. ASCE Journal of Transportation Engineering 124(4):
305-313.
Habib, Z. & Sakai, M. 2003. Family of G2 cubic
transition curves. Dlm: Proceeding of GMAG’03-UK, USA.
Kang, Y.W. & Jamaludin M.A. 2003. Rumus am lingkaran kubik Bezier satahan. Jurnal Teknologi
38(C): 15-28.
Kostov, V. & Degtiariova-Kostova, E. 1995. Some properties of Clothoids. INRIA Research
Report No. 3411; Sophia Antipolis, France, December.
Marsh, D. 1999. Applied Geometry for Computer Graphics
and CAD. London: Springer-Verlag Limited.
Tari, E. & Baykal, O. 2005. A new transition curve with
enhanced properties. Canadian Journal of Civil Engineering 32(5):
913-923.
Walton, D.J. & Meek, D.S. 1996a. A planar cubic Bezier spiral. Journal
of Computational and Applied Mathematics 72: 85-100.
Walton, D.J. & Meek, D.S. 1996b. A Pythagorean hodograph quintic spiral. Journal of Computer Aided Design 72(12): 943-950.
Walton, D.J. & Meek, D.S. 2004. A
generalisation of the Pythagorean hodograph quintic spiral. Journal
of Computational and Applied Mathematics 172: 271-287.
Walton, D.J. & Meek, D.S. 2007. G2 curve design with a pair of Pythagorean
hodograph quintic spiral segments. Journal of Computer Aided
Geometric Design 24: 267-285.
Walton, D.J., Meek, D.S. & Ali,
J.M. 2003. Planar G2 transition
curves composed of cubic Bezier spiral segments. Journal of Computational
and Applied Mathematics 157: 453-476.
Yao, Z. & Joneja, A. 2007. Path
generation for high speed machining using spiral curves. Journal
Computer-Aided Design & Applications 4(1-4): 191-198.
*Corresponding
author; email: azhar.ahmad@fsmt.upsi.edu.my
|