Sains Malaysiana 46(1)(2017): 175–179
http://dx.doi.org/10.17576/jsm-2017-4601-22
Abstract Characterization of a Conditional
Expectation Operator on the Space of
Measurable Sections
(Pencirian Abstrak Bagi Pengendali Jangkaan
Bersyarat di Ruang Bahagian yang
Boleh Diukur)
INOMJON GANIEV*
& TORLA HASSAN
Department of Science in
Engineering, Faculty of Engineering, International Islamic University Malaysia,
P.O. Box 10, 50728 Kuala-Lumpur, Malaysia
Received: 6 March 2016/Accepted:
22 April 2016
ABSTRACT
A conditional expectation operator
plays an important role in geometry of Banach spaces. However, the main issue
is with regards to the existence of a conditional expectation operator that
permits other objects to be considered such as martingales and martingale
convergence theorems. Thus, the purpose of this study is to provide an abstract
characterization of a conditional expectation operator on a space of measurable
sections.
Keywords: Abstract characterization;
conditional expectation operator; measurable section
ABSTRAK
Pengendalian
jangkaan bersyarat memainkan peranan yang penting di dalam geometri
ruang Banach. Walau bagaimanapun, isu utama adalah berkaitan dengan kewujudan
pengendali jangkaan bersyarat yang membenarkan objek lain yang perlu
dipertimbangkan seperti teori penumpuan martingale dan martingale.
Dengan itu, tujuan kajian ini adalah untuk memberikan pencirian
abstrak bagi pengendali jangkaan bersyarat di ruang bahagian yang
boleh diukur.
Kata
kunci: Bahagian yang boleh diukur; pencirian abstrak; pengendali jangkaan bersyarat
REFERENCES
Ganiev, I.G. &
Shahidi, F.A. 2015. Conditional expectation operator on the
space of measurable sections. AIP Conference Proceedings 1660:
090046. doi: 10.1063/1.4926635.
Ganiev, I.G &
Gharib, S.M. 2013. The Bochner integral for measurable
sections and its properties. Annals of Functional Analysis 4(1):
1-10.
Ganiev, I.G. 2006.
Measurable bundles of lattices and their application. In Studies
on Functional Analysis and its Applications. Nauka, Moscow
(Russian). pp. 9-49.
Gutman, A.E. 1995.
Banach bundles in lattice normed spaces. In Linear
Operators, Associated with Order. Novosibirsk: Izd. IM SO RAN. pp. 63-211 (Russian).
Douglas, R.G. 1965.
Contractive projections on an space. Pacific
Journal of Mathematics 15(2): 443-462.
Diestel, J. & Uhl,
J.J. 1977. Vector Measures. American Mathematical Society, Providence,
R.I. Kusraev, A.G. 1985. Vector Duality and Its Applications. Novosibirsk,
Nauka (Russian).
Kusraev, A.G. 2000.
Dominated operators. Mathematics and and its Applications. Dordrecht:
Kluwer Academic Publishers.
Landers,
D. & Rogge, L. 1981. Characterization of conditional expectation operators for
Banach-valued functions. Proc. Amer. Math. Soc. 81(1): 107-110.
Rao, M.M. 1976. Two characterizations of conditional probability. Proc.
Amer. Math. Soc. 19: 75-80.
Rao, M.M. 1965.
Conditional expectations and closed projections. Nederl. Akad. Wetensch.
Proc. Ser. A 68 Indag. Math. 27: 100-112.
Vakhania, N.N.,
Tarieladze, V.I. & Chobanyan, S.A. 1987. Probability
distributions on Banach spaces. In Mathematics and Its Applications, vol.
14, Reidel, D. (ed), Publishing Co., Dordrecht.
*Corresponding author; email: ganiev1@rambler.ru |