Sains Malaysiana 46(1)(2017): 167–173
http://dx.doi.org/10.17576/jsm-2017-4601-21
Combination of Gamma Irradiation and
Sodium Carbonate Pretreatment on Oil Palm Empty Fruit Bunch (EFB) for High
Acidic Hydrolysis Yield
(Gabungan Prarawatan Iradiasi Gamma dan Natrium
Karbonat ke atas Serabut Tandan
Kosong Kelapa Sawit (EFB)
untuk Hasil Hidrolisis Asid Tinggi)
SIEW XIAN CHIN1,2* CHIN HUA CHIA1, SARANI ZAKARIA1, SAHRIM HJ. AHMAD1
& SITI MASRINDA TASIRIN2
1Bioresources and
Biorefinery Laboratory, School of Applied Physics, Faculty of Science
and Technology, Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
2Department of Chemical
and Process Engineering, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor
Darul Ehsan, Malaysia
Received: 28 March 2015/Accepted:
26 January 2016
ABSTRACT
Oil palm empty fruit bunch (EFB)
fibres were pretreated by gamma irradiation followed by sodium carbonate (Na2CO3)
before the acid hydrolysis process to produce reducing sugars using diluted
sulphuric acid (H2SO4).
In this study, EFB fibres were irradiated at
different doses, i.e. 0, 100 and 200 kGy. Meanwhile, the gamma
irradiated sample were then subjected to Na2CO3 pretreatment
with 0 and 5% total titratable alkali (TTA). The effect of the
pretreatment using gamma irradiation and Na2CO3 on
the physical and chemical properties of the EFB fibres
and the yield of the reducing sugar obtained from the acid hydrolysis process
was investigated. The obtained results showed that the content of holocellulose
was increased significantly with the increase of irradiation doses combined
with Na2CO3 pretreatment,
whereas lignin content of the EFB was decreased. The gamma
irradiation and Na2CO3 pretreatment
resulted in structure breakage and removal of silica of EFB fibres
which can be due to the swelling of the fibres. A synergistic effect between
gamma irradiation and Na2CO3 was
observed, in which the yield of reducing sugars was increased by combining the
gamma irradiation and Na2CO3 pretreatment.
Keywords: Acid hydrolysis;
holocellulose; lignin; sodium carbonate
ABSTRAK
Serabut tandan kosong kelapa sawit (EFB)
telah diprarawat dengan iradiasi gamma dan natrium karbonat (Na2CO3)
sebelum proses hidrolisis asid untuk penghasilan gula penurun menggunakan asid
sulfurik cair (H2SO4). Dalam kajian ini, EFB diradiasikan pada dos
sinaran gamma yang berbeza iaitu, 0, 100 dan 200 kGy. Kemudian, EFB tersebut diprarawat dengan Na2CO3 pada
kepekatan 0 dan 5% kealkalian boleh titrat (TTA). Kesan prarawatan iradiasi gamma dan Na2CO3 terhadap
sifat fizikal dan kimia EFB serta penghasilan gula penurun
daripada proses hidrolisis asid telah dikaji. Keputusan yang
diperoleh menunjukkan kesan prarawatan menyebabkan peningkatan kandungan
holoselulosa yang ketara dengan peningkatan dos iradiasi gamma digabungkan
dengan prarawatan Na2CO3,
manakala kandungan lignin daripada EFB semakin berkurang. Prarawatan iradiasi gamma dan Na2CO3 boleh
menyebabkan kerosakan struktur dan penyingkiran silika daripada gentian EFB disebabkan
oleh kesan pembengkakan gentian. Kesan sinergistik
antara iradiasi gamma dan Na2CO3 diperhatikan,
dengan penghasilan gula penurun meningkat kesan gabungan prarawatan iradiasi
gamma dan Na2CO3.
Kata kunci: Hidrolisis asid; holoselulosa; lignin; natrium
karbonat
REFERENCES
Alemdar,
A. & Sain, M. 2008. Isolation and characterization of
nanofibers from agricultural residues - Wheat straw and soy hulls. Bioresource
Technology 99: 1664-1671.
Binod, P., Sindhu, R.,
Singhania, R.R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran,
R.K. & Pandey, A. 2010. Bioethanol production from rice straw: An overview. Bioresource Technology 101: 4767-4774.
Carrillo,
F., Lis, M.J., Colom, X., López-Mesas, M. & Valldeperas, J. 2005. Effect of alkali
pretreatment on cellulase hydrolysis of wheat straw: Kinetic study. Process
Biochemistry 40: 3360-3364.
Chaudhary, G., Singh,
L.K. & Ghosh, S. 2012. Alkaline pretreatment methods followed by acid
hydrolysis of Saccharum spontaneum for bioethanol production. Bioresource
Technology 124: 111-118.
Chen,
Y., Sharma-Shivappa, R., Keshwani, D. & Chen, C. 2007. Potential
of agricultural residues and hay for bioethanol production. Applied
Biochemistry and Biotechnology 142: 276-290.
Chin, S.X., Chia, C.H.
& Zakaria, S. 2014. Green liquor pretreatment of oil palm
empty fruit bunch (EFB) fibres for high yield of reducing sugars. Journal
of Biobased Materials and Bioenergy 8: 1-6.
Chin, S.X., Chia, C.H.
& Zakaria, S. 2013. Production of reducing sugar from oil palm empty fruit
bunch (EFB) cellulose fibres via acid hydrolysis. BioResources 8:
447-460.
Chung,
B.Y., Lee, J.T., Bai, H.W., Kim, U.J., Bae, H.J., GonWi, S. & Cho, J.Y.
2012. Enhanced enzymatic hydrolysis of poplar bark by combined use of gamma ray and
dilute acid for bioethanol production. Radiation Physics and Chemistry 81:
1003-1007.
Folkedahl, B.C., Snyder,
A.C., Strege, J.R. & Bjorgaard, S.J. 2011. Process
development and demonstration of coal and biomass indirect liquefaction to
synthetic iso-paraffinic kerosene. Fuel Processing Technology 92:
1939-1945.
Goshadrou,
A., Karimi, K. & Taherzadeh, M.J. 2011. Bioethanol
production from sweet sorghum bagasse by Mucor hiemalis. Industrial
Crops and Products 34: 1219-1225.
Guo,
B., Zhang, Y., Ha, S.J., Jin, Y.S. & Morgenroth, E. 2012. Combined biomimetic and
inorganic acids hydrolysis of hemicellulose in Miscanthus for bioethanol
production. Bioresource Technology 110: 278-287.
Han,
Y.W., Timpa, J., Ciegler, A., Courtney, J., Curry, W.F. & Lambremont, E.N.
1981. γ-ray-induced degradation of lignocellulosic materials. Biotechnology and Bioengineering 23: 2525-2535.
Hong,
S.H., Lee, J.T., Lee, S.B., Wi, G.E., Cho, E.J., Singh, S., Lee, S.K. &
Chung, Y.B. 2013. Improved enzymatic hydrolysis of wheat straw by combined use of gamma ray and
dilute acid for bioethanol production. Radiation Physics and Chemistry 94:
231-235.
Ibrahim, S.M., Badri,
K.H. & Hassan, O. 2012. A study on glycerolysis of oil palm empty fruit
bunch fiber. Sains Malaysiana 41(12): 1579-1585.
Kim, T.H., Taylor, F.
& Hicks, K.B. 2008. Bioethanol production from barley
hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresource
Technology 99: 5694-5702.
Kumakura, M. &
Kaetsu, I. 1984. Pretreatment by radiation and acids of chaff
and its effect on enzymatic hydrolysis of cellulose. Agricultural
Wastes 9: 279-287.
Miller, G.L. 1959. Use
of dinitrosalicylicacid reagent for determination of reducing sugar Analytical
Chemistry 31: 426-428.
Newman,
R.H., Vaidya, A.A. & Campion, S.H. 2013. A
mathematical model for the inhibitory effects of lignin in enzymatic hydrolysis
of lignocellulosics. Bioresource Technology 130: 757-762.
Omar,
R., Idris, A., Yunus, R., Khalid, K. & Aida-Isma, M.I. 2011. Characterization of
empty fruit bunch for microwave-assisted pyrolysis. Fuel 90: 1536-1544.
Piarpuzán,
D., Quintero, J.A. & Cardona, C.A. 2011. Empty fruit bunches
from oil palm as a potential raw material for fuel ethanol production. Biomass
and Bioenergy 35: 1130-1137.
Ribeiro, M.A., Oikawa,
H., Mori, M.N., Napolitano, C.M. & Duarte, C.L. 2013. Degradation mechanism
of polysaccharides on irradiated sugarcane bagasse. Radiation Physics and
Chemistry 84: 115-118.
Shamsudin, S., Md Shah,
U.K., Zainudin, H., Abd-Aziz, S., Mustapa Kamal, S.M., Shirai, Y. & Hassan,
M.A. 2012. Effect of steam pretreatment on oil palm empty fruit bunch for the
production of sugars. Biomass and Bioenergy 36: 280-288.
Shuit,
S.H., Tan, K.T., Lee, K.T. & Kamaruddin, A.H. 2009. Oil palm biomass as a
sustainable energy source: A Malaysian case study. Energy 34: 1225-1235.
Sun,
J., Xu, L., Ge, M. & Zhai, M. 2013. Radiation degradation
of microcrystalline cellulose in solid status. Journal of Applied
Polymer Science 127: 1630-1636.
Wang,
K.Q., Xiong, X.Y., Chen, J.P., Chen, L., Su, X. & Liu, Y. 2012. Comparison
of gamma irradiation and steam explosion pretreatment for ethanol production
from agricultural residues. Biomass and Bioenergy 46: 301-308.
Wise, L.E. & Murphy,
M.D.A.A.A. 1946. Chlorite holocellulose, its fractionation and bearing on summative
wood analysis and on studies on the hemicelluloses. Paper Trade Journal 122:
11-19.
Xu, J., Cheng, J.J.,
Sharma-Shivappa, R.R. & Burns, J.C. 2010. Lime pretreatment of switchgrass
at mild temperatures for ethanol production. Bioresource Technology 101:
2900-2903.
Yang,
C., Shen, Z., Yu, G. & Wang, J. 2008. Effect and after effect
of γ radiation pretreatment on enzymatic hydrolysis of wheat straw. Bioresource Technology 99: 6240-6245.
Yang, L., Cao, J., Mao, J.
& Jin, Y. 2013. Sodium carbonate-sodium sulfite
pretreatment for improving the enzymatic hydrolysis of rice straw. Industrial
Crops and Products 43: 711-717.
Yang, L., Cao, J., Jin,
Y., Chang, H.M., Jameel, H., Phillips, R. & Li, Z. 2012. Effects of sodium
carbonate pretreatment on the chemical compositions and enzymatic
saccharification of rice straw. Bioresource Technology 124: 283-291.
Yoon,
M., Choi, J.I., Lee, J.W. & Park, D.H. 2012. Improvement
of saccharification process for bioethanol production from Undaria sp.
by gamma irradiation. Radiation Physics and Chemistry 81:
999-1002.
Zakaria,
S., Roslan, R., Amran, U.A., Chia, C.H. & Bakaruddin, S.B. 2014. Characterization
of residue from EFB and kenaf core fibers in the liquefaction process. Sains
Malaysiana 43(3): 429-435.
Zaldivar, J., Nielsen,
J. & Olsson, L. 2001. Fuel ethanol production from lignocellulose: A
challenge for metabolic engineering and process integration. Applied
Microbiology and Biotechnology 56: 17-34.
*Corresponding author; email: sxchin88@hotmail.com |