Sains Malaysiana 47(3)(2018): 471–479
http://dx.doi.org/10.17576/jsm-2018-4703-06
Applied Chemometric Approach in Identification
Sources of Air Quality Pattern in Selangor, Malaysia
(Aplikasi Pendekatan Kimometriks dalam Mengenal
Pasti Corak Sumber Kualiti Udara di Selangor, Malaysia)
ANG KEAN HUA*
Department of Environmental
Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400
UPM Serdang, Selangor Darul Ehsan, Malaysia
Received: 3 July 2017/Accepted:
17 October 2017
ABSTRACT
In recent years, Malaysia has experienced
quite a few number of chronic air pollution problems and it has
become a major contributor to the deterioration of human health
and ecosystems. This study aimed to assess the air quality data
and identify the pattern of air pollution sources using chemometric
analysis through hierarchical cluster analysis (HCA), discriminant analysis (DA),
principal component analysis (PCA) and multiple linear regression
analysis (MLR). The air quality data from January
2016 until December 2016 was obtained from the Department of Environment
Malaysia. Air quality data from eight sampling stations in Selangor
include the selected variables of nitrogen dioxide (NO2),
ozone (O3), sulfur dioxide (SO2),
carbon monoxide (CO) and particulate matter (PM10).
The HCA resulted in three clusters, namely low pollution source
(LPS), moderate pollution source (MPS)
and slightly high pollution source (SHPS). Meanwhile, DA
resulted in two and four variables for the forward
stepwise mode and the backward stepwise mode, respectively. Through
PCA, it was identified that the
main pollutants of LPS, MPS and
SHPS
came from industrial and vehicle emissions, agricultural
systems, residential factors and natural emission sources. Among
the three models yielded from the MLR analysis, it was found that SHPS
is the most suitable model to be used for the prediction
of Air Pollution Index. This study concluded that a clearer review
and practical design of air quality monitoring network would be
beneficial for better management of air pollution. The study also
suggested that chemometric techniques have the ability to show significant
information on spatial variability for large and complex air quality
data.
Keywords: Discriminant analysis; hierarchical
cluster analysis; multiple linear regression analysis; principal
component analysis
ABSTRAK
Sejak beberapa tahun kebelakangan
ini, Malaysia telah mengalami beberapa masalah pencemaran udara yang kronik dan
ia telah menjadi salah satu penyebab utama dalam kemerosotan kesihatan manusia
dan ekosistem. Matlamat kajian ini adalah untuk menilai data kualiti udara dan
mengenal pasti corak sumber pencemaran udara menggunakan teknik kimometriks
melalui analisis pengkelasan hierarki (HCA), analisis diskriminan (DA),
analisis komponen berprinsip (PCA) dan analisis regrasi
linear pelbagai (MLR). Data kualiti udara bermula dari
Januari hingga Disember 2016 telah diperoleh daripada Jabatan Alam Sekitar
Malaysia. Data kualiti udara dari lapan stesen persampelan di Negeri Selangor
melibatkan pemboleh ubah terpilih nitrogen dioksida (NO2),
ozon (O3), sulfur dioksida (SO2),
karbon monoksida (CO) dan zarahan terampai (PM10).
Proses HCA telah menghasilkan tiga kluster iaitu sumber pencemar
rendah (LPS), sumber pencemar sederhana (MPS)
dan sumber pencemar sedikit tinggi (SHPS). Sementara itu, proses DA telah
menghasilkan dua pemboleh ubah bagi mod ke hadapan berperingkat dan empat
pemboleh ubah bagi mod ikut langkah kebelakang. Melalui proses PCA,
ia telah dikenal pasti bahawa bahan pencemar utama bagi LPS, MPS dan SHPS berasal daripada hasil pelepasan industri dan pengangkutan,
sistem pertanian, faktor kediaman dan sumber pelepasan semula jadi. Antara
ketiga-tiga model yang dihasilkan melalui analisis MLR,
ia didapati bahawa SHPS adalah model yang paling sesuai
untuk digunakan bagi kerja-kerja ramalan Indeks Pencemaran Udara. Kajian ini menyimpulkan
bahawa ulasan serta reka bentuk praktikal ke atas rangkaian pengawasan kualiti
udara akan memberi manfaat dalam usaha mengurus pencemaran udara dengan lebih
baik. Kajian ini juga mencadangkan bahawa teknik kimometriks mempunyai
keupayaan untuk mendedahkan maklumat yang penting tentang pemboleh ubah reruang
bagi data kualiti udara yang besar dan rumit.
Kata kunci: Analisis diskriminan;
analisis komponen berprinsip; analisis pengkelasan hierarki; analisis
regrasi linear pelbagai
REFERENCES
Aertsen, W., Kint, V., Van
Orshoven, J., Özkan, K. & Muys, B. 2010. Comparison and ranking of
different modelling techniques for prediction of site index in Mediterranean
mountain forests. Ecological modelling 221(8): 1119-1130.
Aris, A.Z., Preveena, S.M.,
Isa, N.M., Lim, W.Y., Juahir, H., Yusoff, M.K. & Mustapha, A. 2013.
Application of environmentric methods to surface water quality assessment of
Langkawi Geopark (Malaysia). Environmental Forensics 14(3): 230-239.
Azid, A., Juahir, H., Ezani,
E., Toriman, M.E., Endut, A., Rahman, M.N.A., Yunus, K., Kamarudin, M.K.A., Hasnam,
C.N.C., Saudi, A.S.M. & Umar, R. 2015. Identification source of variation
on regional impact of air quality pattern using chemometric. Aerosol and Air
Quality Research 15(4): 1545-1558.
Azid, A., Juahir, H.,
Toriman, M.E., Kamarudin, M.K.A., Saudi, A.S.M., Hasnam, C.N.C., Aziz, N.A.A.,
Azaman, F., Latif, M.T., Zainuddin, S.F.M. & Osman, M.R. 2014. Prediction
of the level of air pollution using principal component analysis and artificial
neural network techniques: A case study in Malaysia. Water, Air, & Soil
Pollution 225(8): 2063.
Azid, A., Juahir, H., Latif,
M.T., Zain, S.M. & Osman, M.R. 2013. Feed-forward artificial neural network
model for air pollutant index prediction in the southern region of Peninsular
Malaysia. Journal of Environmental Protection 4(12A): 1-10.
Azmi, S.Z., Latif, M.T.,
Ismail, A.S., Juneng, L. & Jemain, A.A. 2010. Trend and status of air
quality at three different monitoring stations in the Klang Valley, Malaysia. Air
Quality, Atmosphere & Health 3(1): 53-64.
Banan, N., Latif, M.T.,
Juneng, L. & Ahamad, F. 2013. Characteristics of surface ozone
concentrations at stations with different backgrounds in the Malaysian
Peninsula. Aerosol and Air Quality Research 13(3): 1090-1106.
Department of Environment
Malaysia (DOE). 2012. Malaysia Environmental Quality Report. Kuala
Lumpur: Department of Environment, Ministry of Natural Resources and
Environment.
Dominick, D., Juahir, H.,
Latif, M.T., Zain, S.M. & Aris, A.Z. 2012. Spatial assessment of air
quality patterns in Malaysia using multivariate analysis. Atmospheric
Environment 60: 172-181.
Haiduc, I. &
Beldean-Gale, M.S. 2011. Variation of greenhouse gases in urban areas-case
study: CO2, CO, and CH4 in three Romanian cities. Air
Quality-Models and Applications. Intech
Henry, R.C., Lewis, C.W.,
Hopke, P.K. & Williamson, H.J. 1984. Review of receptor model fundamentals. Atmospheric Environment (1967) 18(8): 1507-1515.
Hua, A.K., Kusin, F.M. &
Praveena, S.M. 2016. Spatial variation assessment of river water quality using
environmetric techniques. Polish Journal of Environmental Studies 25(6):
2411-2421.
Juahir, H., Zain, S.M.,
Yusoff, M.K., Hanidza, T.I.T., Armi, A.S.M., Toriman, M.E. & Mokhtar, M.
2011. Spatial water quality assessment of Langat River Basin (Malaysia) using
environmetric techniques. Environmental Monitoring and Assessment 173(1):
625-641.
Khan, M.F., Latif, M.T., Lim,
C.H., Amil, N., Jaafar, S.A., Dominick, D., Nadzir, M.S.M., Sahani, M. &
Tahir, N.M. 2015. Seasonal effect and source apportionment of polycyclic aromatic
hydrocarbons in PM 2.5. Atmospheric Environment 106: 178-190.
Mahiyuddin, W.R.W., Sahani,
M., Aripin, R., Latif, M.T., Thach, T.Q. & Wong, C.M. 2013. Short-term
effects of daily air pollution on mortality. Atmospheric Environment 65:
69-79.
Makmom Abdullah, A., Armi Abu
Samah, M. & Yee Jun, T. 2012. An overview of the air pollution trend in
Klang Valley, Malaysia. Open Environmental Sciences 6(1): 13-19.
Manjunanth, B.G., Frick, M.
& Reiss, R.D. 2012. Some notes on extremal discriminant analysis. J.
Multivar. Anal. 103: 107-115.
Moustris, K.P., Ziomas, I.C.
& Paliatsos, A.G. 2010. 3-Day-ahead forecasting of regional pollution index
for the pollutants NO2, CO, SO2, and O3 using
artificial neural networks in Athens, Greece. Water, Air, & Soil
Pollution 209(1-4): 29-43.
Mutalib, S.N.S.A., Juahir,
H., Azid, A., Sharif, S.M., Latif, M.T., Aris, A.Z., Zain, S.M. & Dominick,
D. 2013. Spatial and temporal air quality pattern recognition using
environmetric techniques: A case study in Malaysia. Environmental Science:
Processes & Impacts 15(9): 1717-1728.
Rajab, J.M., Tan, K.C., Lim,
H.S. & MatJafri, M.Z. 2011. Investigation on the carbon monoxide pollution
over Peninsular Malaysia caused by Indonesia fires from AIRS daily measurement. Advanced Air Pollution. InTech.
Sadanaga, Y., Sengen, M.,
Takenaka, N. & Bandow, H. 2012. Analyses of the ozone weekend effect in
Tokyo, Japan: Regime of oxidant (O3+ NO2) production. Aerosol
Air Qual. Res. 12: 161-168.
Seinfeld, J.H. & Pandis,
S.N. 1998. Atmospheric Chemistry and Physics. New York: John Wiley &
Sons Inc.
Sulong, N.A., Latif, M.T.,
Khan, M.F., Amil, N., Ashfold, M.J., Wahab, M.I.A., Chan, K.M. & Sahani, M.
2017. Source apportionment and health risk assessment among specific age groups
during haze and non-haze episodes in Kuala Lumpur, Malaysia. Science of the
Total Environment 601: 556-570.
Ul-Saufie, A.Z., Yahya, A.S.,
Ramli, N.A. & Hamid, H.A. 2011. Comparison between multiple linear
regression and feed forward back propagation neural network models for
predicting PM10 concentration level based on gaseous and meteorological
parameters. International Journal of Applied 1(4): 42-49.
Wei, X., Liu, Q., Lam, K.S.
& Wang, T. 2012. Impact of precursor levels and global warming on peak
ozone concentration in the Pearl River Delta Region of China. Advances in
Atmospheric Sciences 29(3): 635-635.
*Corresponding
author; email: angkeanhua@yahoo.com
|