Sains Malaysiana 47(3)(2018): 481–488
http://dx.doi.org/10.17576/jsm-2018-4703-07
Bioconversion of Biodiesel-derived Crude Glycerol
to 1,3-Dihydroxyacetone by a Potential Acetic Acid Bacteria
(Biopenukaran Gliserol Mentah Janaan Biodiesel
kepada 1,3-Dihidroksiaseton oleh Potensi Bakteria Asid Asetik)
VARAVUT TANAMOOL1, PIYOROT HONGSACHART2 & WICHAI SOEMPHOL2*
1Chemistry Program,
Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University
Nakhon Ratchasima, 30000,
Thailand
2Faculty of Applied
Sciences and Engineering, Khon Kaen University, Nong Khai Campus, Nong Khai,
43000, Thailand
Received: 7
October 2015/Accepted: 9 October 2017
ABSTRACT
Acetic acid bacteria (AAB)
isolated from natural resources and fermented plant beverages were screened to
produce 1,3-dihydroxyacetone (DHA) from non-detoxified crude
glycerol. Among them, the isolate NKC115 was identified as Gluconobacter
frateurii and produced the highest amounts of DHA.
Subsequently, the effects of growth-medium conditions (initial pH, crude
glycerol concentration and nitrogen sources) on growth and DHA-production
capability were examined. The results showed that the crude glycerol
concentration increase to above 100 g/L suppressed growth and DHA production.
The highest amount of DHA obtained was 27.50 g/L, from an
initial crude glycerol concentration of 100 g/L. Meanwhile, an initial pH of
5.5-7.5 in the YPGc medium did not significantly
affect the bacterial growth and DHA production. The optimal
nitrogen source was peptone, with DHA production at 34.70 g/L.
Furthermore, overexpression of the nhaK2 gene encoding for
the Na+(K+)/H+ antiporter
from Acetobactor tropicalis SKU1100 in G. frateurii NKC115
improved growth and increased the accumulation of DHA (37.25
g/L) from an initial crude glycerol concentration of 20%. These results
indicated that the expression of this antiporter might maintain an optimal
intracellular pH and concentration of Na+ or
K+, leading to the cells’ ability to tolerate high
concentrations of crude glycerol.
Keywords: Acetic acid bacteria;
biodiesel; crude glycerol; dihydroxyacetone
ABSTRAK
Bakteria asid asetik (AAB)
yang dipencilkan daripada sumber alam dan minuman fermentasi berasaskan
tumbuhan telah ditapis untuk menghasilkan 1,3-dihidroksiaseton (DHA)
daripada gliserol mentah yang belum disingkirkan toksiknya. Antara
mereka, pencilan NKC115
telah dikenal pasti sebagai Gluconobacter frateurii dan menghasilkan
jumlah DHA yang tertinggi. Seterusnya, kesan
keadaan medium pertumbuhan (pH pemula, kepekatan gliserol mentah
dan sumber nitrogen) terhadap pertumbuhan dan kemampuan penghasilan
DHA telah
dikaji. Keputusan menunjukkan kepekatan gliserol mentah bertambah
melebihi 100 g/L pertumbuhan kawalan dan penghasilan DHA. Jumlah DHA tertinggi
diperoleh adalah 27.50 g/L, daripada kepekatan gliserol mentah 100
g/L. Sementara itu, pH pemula 5.5-7.5 di dalam medium YPGc
tidak mempengaruhi pertumbuhan bakteria dan penghasilan DHA dengan
nyata. Sumber optimum nitrogen ialah pepton dengan penghasilan DHA pada
34.70 g/L. Tambahan pula, expresi melampau daripada gen pengekodan
nhaK2 untuk antipengangkat Na+(K+)/H+
daripada Acetobactor tropicalis SKU1100 dalam G. frateurii NKC115
memperbaiki pertumbuhan dan meningkatkan pengumpulan DHA (37.25
g/L) daripada kepekatan gliserol mentah pemula sebanyak 20%. Keputusan
ini menunjukkan ekspresi antipengangkat berkemungkinan mengekalkan
pH intrasel yang optimum dan kepekatan Na+ atau K+,
menyebabkan kemampuan sel untuk menerima kepekatan gliserol mentah
yang tinggi.
Kata
kunci: Bakteria asid asetik; biodiesel; dihidroksiaseton; gliserol kasar
REFERENCES
Adachi, O.,
Fujii, Y., Ghaly, M.F., Toyama, H., Shinagawa, E. & Matsushita, K. 2001.
Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter
suboxydans IF0 3257: A versatile enzyme for the oxidative fermentation of
various ketoses. Bioscience Biotechnology Biochemistry 65: 2755-2762.
Almeida,
J.R.M., Fávaro, L.C.L. & Quirino, B.F. 2012. Biodiesel biorefinery:
Opportunities and challenges for microbial production of fuels and chemicals
from glycerol waste. Biotechnology for Biofuels 48: 1-16.
Ameyama, M.,
Shinagawa, E., Matsushita, K. & Adachi, O. 1985. Solubilization,
purification and properties of membrane-bound glycerol dehydrogenase from Gluconobacter
industrius. Agricultural and Biological Chemistry 49: 1001-1010.
Azuma, Y.,
Hosoyama, A., Matsutani, M., Furuya, N., Horikawa, H., Harada, T., Hirakawa,
H., Kuhara, S., Matsushita, K., Fujita, N. & Shirai, M. 2009. Whole-genome
analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic
Acids Research 37: 5768-5783.
Black, C.S.
& Nair, G.R. 2013. Bioconversion of glycerol to dihydroxyacetone by
immobilized Gluconacetobacter xylinus cells. International Journal of
Chemical Engineering and Applications 4: 310-316.
Brown, D.A.
2001. Skin pigmentation enhancers. Journal of Photochemistry Photobiology B
63: 148-161.
Chatzifragkou,
A. & Papanikolaou, S. 2012. Effect of impurities in biodiesel-deri ved
waste glycerol on the performance and feasibility of biotechno logical
processes. Applied Microbiology and Biotechnology 95: 13-27.
Claret, C., Bories, A. & Soucaille, P. 1992. Glycerol
inhibition of growth and dihydroxyacetone production by Gluconobacter
oxydans. Current Microbiology 25: 149-155.
Fesq, H., Brockow, K.,
Strom, K., Mempel, M., Ring, J. & Abeck, D. 2001. Dihydroxyacetone in a new
formulation-a powerful therapeutic option in vitiligo. Dermatology 203:
241-243.
Habe, H., Fukuoka, T.,
Kitamoto, D. & Sakaki, K. 2009a. Biotechnological production of D-glyceric
acid and its application. Applied Microbiology and Biotechnology 84:
445-452.
Habe, H., Shimada, Y.,
Fukuoka, T., Kitamoto, D., Itagaki, M., Watanabe, K., Yanagishita, H. &
Sakaki, K. 2009b. Production of glyceric acid by Gluconobacter sp.
NBRC3259 using raw glycerol. Bioscience Biotechnology and Biochemistry 73:
1799-1805.
Hu, Z.C., Liu, Z.Q.,
Zheng, Y.G. & Shen, Y.C. 2010. Production of 1,3-dihydroxyacetone from
glycerol by Gluconobacter oxydans ZJB09112. Journal of Microbiology
and Biotechnology 20: 340-345.
Johnson, D.T. &
Taconi, K.A. 2007. The glycerin glut: Options for the value-added conversion of
crude glycerol resulting from biodiesel production. Environmental Progress 26:
338-348.
Koller, M., Bona, R.,
Braunegg, G., Hermann, C., Horvat, P., Kroutil, M., Martinz, J., Neto, J.,
Pereira, L. & Varila, P. 2005. Production of polyhydroxyalkanoates from
agricultural waste and surplus materials. Biomacromolecules 6: 565-561.
Lee, P.C., Lee, W.G.,
Lee, S.Y. & Chang, H.N. 2001. Succinic acid production with reduced
by-product formation in the fermentation of Anaerobiospirillum
succiniciproducens using glycerol as a carbon. Biotechnology and
Bioengineering 78: 41-48.
Li, M.H., Wu, J., Liu,
X., Lin, J.P., Wei, D.Z. & Chen, H. 2010. Enhanced production of
dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in
an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans. Bioresource
Technology 101: 8294-8299.
Liu, Y.P., Sun, Y., Tan,
C., Li, H., Zheng, X.J., Jin, K.Q. & Wang, G. 2013. Efficient production of
dihydroxyacetone from biodiesel-derived crude glycerol by newly isolated Gluconobacter
frateurii. Bioresource Technology 142: 384-389.
Ma, L., Lu, W., Xia, Z.
& Wen, J. 2010. Enhancement of dihydroxyacetone production by a mutant of Gluconobacter
oxydans. Biosysthesis and Engineering Journal 49: 61-67.
Matsushita, K., Toyama,
H. & Adachi, O. 1994. Respiratory chains and bioenergetics of acetic acid
bacteria. Advanced Microbial Physiology 36: 247-301.
Matsushita, K., Fujii,
Y., Ano, Y., Toyama, H., Shinjoh, M., Tomiyama, N., Miyazaki, T., Sugisawa, T.,
Hoshino, T. & Adachi, O. 2003. 5-Keto-D-gluconate production is catalyzed
by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Applied and Environmental Microbiology 69: 1959-1966.
Sato, S., Kitamoto, D.
& Habe, H. 2014. Chemical mutagenesis of Gluconobacter frateurii to
construct methanol-resistant mutants showing glyceric acid production from
methanol-containing glycerol. Journal of Boscience and Bioengineering 117:
197-199.
Soemphol, W., Adachi,
O., Matsushita, K. & Toyama, H. 2008. Distinct physiological roles of two
membrane-bound dehydrogenases responsible for D-sorbitol oxidation in Gluconobacter
frateurii. Bioscience Biotechnology and Biochemistry 72: 842-850.
Soemphol, W., Tatsuno,
M., Okada, T., Matsutani, M., Kataoka, N., Yakushia, T. & Matsushita, K.
2015. A novel Na+(K+)/ H+ antiporter
plays an important role in the growth of Acetobacter tropicalis SKU1100
at high temperatures via regulation of cation and pH homeostasis. Journal of
Biotechnology 211: 46-55.
Soemphol, W., Deeraksa,
A., Matsutani, M., Yakushi, T., Toyama, H., Adachi, A., Yamada, M. &
Matsushita, K. 2011. Global analysis of the genes involved in the
thermotolerance mechanism of thermotolerant Acetobacter tropicalis SKU1100. Bioscience Biotechnology and Biochemistry 75: 1921-1928.
Taconi, K.A.,
Venkataramanan, K.P. & Johnson, D.T. 2009. Growth and solvent production by Clostridium pasteurianum ATCC(R)6013(TM) utilizing biodiesel-derived
crude glycerol as the sole carbon source. Environmental Progress &
Sustainable Energy 28: 100-110.
Tamura, K., Stecher, G.,
Peterson, D., Filipski, A. & Kumar, S. 2013. MEGA6: Molecular evolutionary
genetics analysis. Version 6.0. Molecular Biology and Evolution 30:
2725-2729.
Teeka, J., Imai, T.,
Reungsang, A., Cheng, X., Yuliani, E., Thiantanankul, J., Poomipuk, N.,
Yamaguchi, J., Jeenanong, A., Higuchi, T., Yamamoto, K. & Sekine, M. 2012.
Characterization of polyhydroxyalkanoates (PHAs) biosynthesis by isolated Novosphingobium sp. THA_AIK7 using crude glycerol. Journal of Industrial Microbiology
and Biotechnology 39: 749-758.
Thompson, J.D., Higgins,
D.G. & Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of
progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids
Research 22: 4673-4680.
Xiu, Z.L., Song, B.H.,
Wang, Z.T., Sun, L.H., Feng, E.M. & Zeng, A.P. 2014. Optimization of
dissimilation of glycerol to 1,3- propanediol by Klebsiella pneumoniae in
one- and two-stage anaerobic cultures. Biochemical Engineering Journal 19:
189-197.
*Corresponding author; email: wichso@kku.ac.th
|