Sains Malaysiana 47(3)(2018): 481–488

http://dx.doi.org/10.17576/jsm-2018-4703-07

 

Bioconversion of Biodiesel-derived Crude Glycerol to 1,3-Dihydroxyacetone by a Potential Acetic Acid Bacteria

(Biopenukaran Gliserol Mentah Janaan Biodiesel kepada 1,3-Dihidroksiaseton oleh Potensi Bakteria Asid Asetik)

 

VARAVUT TANAMOOL1, PIYOROT HONGSACHART2 & WICHAI SOEMPHOL2*

 

1Chemistry Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University

Nakhon Ratchasima, 30000, Thailand

 

2Faculty of Applied Sciences and Engineering, Khon Kaen University, Nong Khai Campus, Nong Khai, 43000, Thailand

 

Received: 7 October 2015/Accepted: 9 October 2017

 

ABSTRACT

Acetic acid bacteria (AAB) isolated from natural resources and fermented plant beverages were screened to produce 1,3-dihydroxyacetone (DHA) from non-detoxified crude glycerol. Among them, the isolate NKC115 was identified as Gluconobacter frateurii and produced the highest amounts of DHA. Subsequently, the effects of growth-medium conditions (initial pH, crude glycerol concentration and nitrogen sources) on growth and DHA-production capability were examined. The results showed that the crude glycerol concentration increase to above 100 g/L suppressed growth and DHA production. The highest amount of DHA obtained was 27.50 g/L, from an initial crude glycerol concentration of 100 g/L. Meanwhile, an initial pH of 5.5-7.5 in the YPGc medium did not significantly affect the bacterial growth and DHA production. The optimal nitrogen source was peptone, with DHA production at 34.70 g/L. Furthermore, overexpression of the nhaK2 gene encoding for the Na+(K+)/H+ antiporter from Acetobactor tropicalis SKU1100 in G. frateurii NKC115 improved growth and increased the accumulation of DHA (37.25 g/L) from an initial crude glycerol concentration of 20%. These results indicated that the expression of this antiporter might maintain an optimal intracellular pH and concentration of Na+ or K+, leading to the cells’ ability to tolerate high concentrations of crude glycerol.

 

Keywords: Acetic acid bacteria; biodiesel; crude glycerol; dihydroxyacetone

 

ABSTRAK

Bakteria asid asetik (AAB) yang dipencilkan daripada sumber alam dan minuman fermentasi berasaskan tumbuhan telah ditapis untuk menghasilkan 1,3-dihidroksiaseton (DHA) daripada gliserol mentah yang belum disingkirkan toksiknya. Antara mereka, pencilan NKC115 telah dikenal pasti sebagai Gluconobacter frateurii dan menghasilkan jumlah DHA yang tertinggi. Seterusnya, kesan keadaan medium pertumbuhan (pH pemula, kepekatan gliserol mentah dan sumber nitrogen) terhadap pertumbuhan dan kemampuan penghasilan DHA telah dikaji. Keputusan menunjukkan kepekatan gliserol mentah bertambah melebihi 100 g/L pertumbuhan kawalan dan penghasilan DHA. Jumlah DHA tertinggi diperoleh adalah 27.50 g/L, daripada kepekatan gliserol mentah 100 g/L. Sementara itu, pH pemula 5.5-7.5 di dalam medium YPGc tidak mempengaruhi pertumbuhan bakteria dan penghasilan DHA dengan nyata. Sumber optimum nitrogen ialah pepton dengan penghasilan DHA pada 34.70 g/L. Tambahan pula, expresi melampau daripada gen pengekodan nhaK2 untuk antipengangkat Na+(K+)/H+ daripada Acetobactor tropicalis SKU1100 dalam G. frateurii NKC115 memperbaiki pertumbuhan dan meningkatkan pengumpulan DHA (37.25 g/L) daripada kepekatan gliserol mentah pemula sebanyak 20%. Keputusan ini menunjukkan ekspresi antipengangkat berkemungkinan mengekalkan pH intrasel yang optimum dan kepekatan Na+ atau K+, menyebabkan kemampuan sel untuk menerima kepekatan gliserol mentah yang tinggi.

 

Kata kunci: Bakteria asid asetik; biodiesel; dihidroksiaseton; gliserol kasar

REFERENCES

Adachi, O., Fujii, Y., Ghaly, M.F., Toyama, H., Shinagawa, E. & Matsushita, K. 2001. Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IF0 3257: A versatile enzyme for the oxidative fermentation of various ketoses. Bioscience Biotechnology Biochemistry 65: 2755-2762.

Almeida, J.R.M., Fávaro, L.C.L. & Quirino, B.F. 2012. Biodiesel biorefinery: Opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnology for Biofuels 48: 1-16.

Ameyama, M., Shinagawa, E., Matsushita, K. & Adachi, O. 1985. Solubilization, purification and properties of membrane-bound glycerol dehydrogenase from Gluconobacter industrius. Agricultural and Biological Chemistry 49: 1001-1010.

Azuma, Y., Hosoyama, A., Matsutani, M., Furuya, N., Horikawa, H., Harada, T., Hirakawa, H., Kuhara, S., Matsushita, K., Fujita, N. & Shirai, M. 2009. Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Research 37: 5768-5783.

Black, C.S. & Nair, G.R. 2013. Bioconversion of glycerol to dihydroxyacetone by immobilized Gluconacetobacter xylinus cells. International Journal of Chemical Engineering and Applications 4: 310-316.

Brown, D.A. 2001. Skin pigmentation enhancers. Journal of Photochemistry Photobiology B 63: 148-161.

Chatzifragkou, A. & Papanikolaou, S. 2012. Effect of impurities in biodiesel-deri ved waste glycerol on the performance and feasibility of biotechno logical processes. Applied Microbiology and Biotechnology 95: 13-27.

Claret, C., Bories, A. & Soucaille, P. 1992. Glycerol inhibition of growth and dihydroxyacetone production by Gluconobacter oxydans. Current Microbiology 25: 149-155.

Fesq, H., Brockow, K., Strom, K., Mempel, M., Ring, J. & Abeck, D. 2001. Dihydroxyacetone in a new formulation-a powerful therapeutic option in vitiligo. Dermatology 203: 241-243.

Habe, H., Fukuoka, T., Kitamoto, D. & Sakaki, K. 2009a. Biotechnological production of D-glyceric acid and its application. Applied Microbiology and Biotechnology 84: 445-452.

Habe, H., Shimada, Y., Fukuoka, T., Kitamoto, D., Itagaki, M., Watanabe, K., Yanagishita, H. & Sakaki, K. 2009b. Production of glyceric acid by Gluconobacter sp. NBRC3259 using raw glycerol. Bioscience Biotechnology and Biochemistry 73: 1799-1805.

Hu, Z.C., Liu, Z.Q., Zheng, Y.G. & Shen, Y.C. 2010. Production of 1,3-dihydroxyacetone from glycerol by Gluconobacter oxydans ZJB09112. Journal of Microbiology and Biotechnology 20: 340-345.

Johnson, D.T. & Taconi, K.A. 2007. The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. Environmental Progress 26: 338-348.

Koller, M., Bona, R., Braunegg, G., Hermann, C., Horvat, P., Kroutil, M., Martinz, J., Neto, J., Pereira, L. & Varila, P. 2005. Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6: 565-561.

Lee, P.C., Lee, W.G., Lee, S.Y. & Chang, H.N. 2001. Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon. Biotechnology and Bioengineering 78: 41-48.

Li, M.H., Wu, J., Liu, X., Lin, J.P., Wei, D.Z. & Chen, H. 2010. Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans. Bioresource Technology 101: 8294-8299.

Liu, Y.P., Sun, Y., Tan, C., Li, H., Zheng, X.J., Jin, K.Q. & Wang, G. 2013. Efficient production of dihydroxyacetone from biodiesel-derived crude glycerol by newly isolated Gluconobacter frateurii. Bioresource Technology 142: 384-389.

Ma, L., Lu, W., Xia, Z. & Wen, J. 2010. Enhancement of dihydroxyacetone production by a mutant of Gluconobacter oxydans. Biosysthesis and Engineering Journal 49: 61-67.

Matsushita, K., Toyama, H. & Adachi, O. 1994. Respiratory chains and bioenergetics of acetic acid bacteria. Advanced Microbial Physiology 36: 247-301.

Matsushita, K., Fujii, Y., Ano, Y., Toyama, H., Shinjoh, M., Tomiyama, N., Miyazaki, T., Sugisawa, T., Hoshino, T. & Adachi, O. 2003. 5-Keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Applied and Environmental Microbiology 69: 1959-1966.

Sato, S., Kitamoto, D. & Habe, H. 2014. Chemical mutagenesis of Gluconobacter frateurii to construct methanol-resistant mutants showing glyceric acid production from methanol-containing glycerol. Journal of Boscience and Bioengineering 117: 197-199.

Soemphol, W., Adachi, O., Matsushita, K. & Toyama, H. 2008. Distinct physiological roles of two membrane-bound dehydrogenases responsible for D-sorbitol oxidation in Gluconobacter frateurii. Bioscience Biotechnology and Biochemistry 72: 842-850.

Soemphol, W., Tatsuno, M., Okada, T., Matsutani, M., Kataoka, N., Yakushia, T. & Matsushita, K. 2015. A novel Na+(K+)/ H+ antiporter plays an important role in the growth of Acetobacter tropicalis SKU1100 at high temperatures via regulation of cation and pH homeostasis. Journal of Biotechnology 211: 46-55.

Soemphol, W., Deeraksa, A., Matsutani, M., Yakushi, T., Toyama, H., Adachi, A., Yamada, M. & Matsushita, K. 2011. Global analysis of the genes involved in the thermotolerance mechanism of thermotolerant Acetobacter tropicalis SKU1100. Bioscience Biotechnology and Biochemistry 75: 1921-1928.

Taconi, K.A., Venkataramanan, K.P. & Johnson, D.T. 2009. Growth and solvent production by Clostridium pasteurianum ATCC(R)6013(TM) utilizing biodiesel-derived crude glycerol as the sole carbon source. Environmental Progress & Sustainable Energy 28: 100-110.

Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis. Version 6.0. Molecular Biology and Evolution 30: 2725-2729.

Teeka, J., Imai, T., Reungsang, A., Cheng, X., Yuliani, E., Thiantanankul, J., Poomipuk, N., Yamaguchi, J., Jeenanong, A., Higuchi, T., Yamamoto, K. & Sekine, M. 2012. Characterization of polyhydroxyalkanoates (PHAs) biosynthesis by isolated Novosphingobium sp. THA_AIK7 using crude glycerol. Journal of Industrial Microbiology and Biotechnology 39: 749-758.

Thompson, J.D., Higgins, D.G. & Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673-4680.

Xiu, Z.L., Song, B.H., Wang, Z.T., Sun, L.H., Feng, E.M. & Zeng, A.P. 2014. Optimization of dissimilation of glycerol to 1,3- propanediol by Klebsiella pneumoniae in one- and two-stage anaerobic cultures. Biochemical Engineering Journal 19: 189-197.

 

 

*Corresponding author; email: wichso@kku.ac.th

 

 

 

 

previous