Sains Malaysiana 48(8)(2019):
1565–1574
http://dx.doi.org/10.17576/jsm-2019-4808-01
Headwater Streams
Contain Amounts of Heavy Metal in an Alpine Forest in the Upper Reaches of the
Yangtze River
(Aliran
Kepala Air Mengandungi
Amaun Logam Berat
di Hutan Alpin di Bahagian
Hulu Sungai Yangtze)
ZIYI LIANG, FUZHONG WU*, WANQIN YANG, YU ZHANG, JUNWEI WU
& FAN YANG
Long-term Research
Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry
Engineering, Institute of Ecology & Forestry, Sichuan Agricultural
University, Chengdu
China
Received:
1 June 2017/Accepted: 21 January 2018
ABSTRACT
Headwater streams are
an essential link in the source and sink dynamics of heavy metals between
terrestrial and aquatic ecosystems and are also critically important for
downstream ecosystem processes and water quality. However, there is little
available information about headwater streams. Therefore, the stream storage
and distribution patterns of Cd, Pb, Ni, Cr, Cu, Mn and Zn were investigated in ten headwater streams of an
Alpine forest located in the upper Yangtze River during the rainy season. The
results indicated that the heavy metal storage per unit area of the
investigated streams was as follows: 0.95 mg·m-2 for
Cd, 8.36 mg m-2 for Pb, 1.98 mg m-2 for
Ni, 136.98 mg m-2 for Cr, 9.29 mg m-2 for
Cu, 433.39 mg m-2 for Mn and 29.07 mg m-2 for Zn; while the heavy metal storage per unit area of
the catchment was as follows: 1.19 mg hm-2 for Cd, 10.47 mg hm-2 for Pb, 2.48 mg hm-2 for Ni, 171.62 mg hm-2 for
Cr, 11.64 mg hm-2 for Cu, 542.99 mg hm-2 for Mn and 36.42 mg hm-2 for
Zn. Headwater streams present remarkable potential for contamination, and plant
debris from riparian forests may be the most important source of heavy metals,
while the stream sediment acts as a significant sink for heavy metals. These
results provide new perspectives and data for understanding the ecological
links between alpine forests and watersheds.
Keywords: Headwater streams;
heavy metal storage; plant debris; sediment; water
conservation land
ABSTRAK
Aliran kepala air adalah
satu pautan
penting dalam dinamik
sumber dan
sink logam berat antara
ekosistem daratan
dan akuatik dan
juga amat
penting bagi proses hiliran ekosistem dan kualiti air. Walau bagaimanapun, terdapat sedikit maklumat tentang aliran kepala air. Oleh yang demikian, aliran penyimpanan dan pengedaran corak Cd, Pb, Ni, Cr, Cu, Mn dan Zn dikaji
dalam sepuluh
aliran kepala air untuk hutan Alpin yang terletak di bahagian hulu Sungai
Yangtze. Hasil menunjukkan bahawa menyimpanan logam berat setiap kawasan
unit aliran dikaji
adalah seperti berikut: 0.95 mg·m-2 untuk
Cd, 8.36 mg m-2 untuk Pb,
1.98 m mg-2 bagi Ni, 136.98 mg m-2
untuk Cr, 9.29 mg m-2 untuk
Cu, 433.39 mg m-2 untuk
Mn dan 29.07 mg m-2 untuk Zn; sementara penyimpanan logam berat setiap unit luas kawasan tadahan
adalah seperti
berikut: 1.19 mg hm-2 untuk
Cd, 10.47 mg hm-2 untuk
Pb, 2.48 mg hm-2 untuk
Ni, 171.62 mg hm-2 untuk
Cr, 11.64 mg hm-2 untuk Cu, 542.99 mg hm-2
untuk Mn dan
36.42 mg hm-2 untuk Zn. Aliran kepala air menunjukkan potensi yang luar biasa bagi
pencemaran dan
sisa loji dari
hutan riparia mungkin
menjadi sumber terpenting logam berat, sementara endapan sungai bertindak sebagai sinki yang ketara bagi logam berat.
Keputusan ini
memberikan perspektif yang baru dan data untuk
memahami hubungan
ekologi antara hutan Alpin dan tadahan air.
Kata kunci: Aliran kepala air; penyimpanan logam berat; sedimen; sisa loji kawasan pulihara air
REFERENCES
Alexander, R., Boyer, E., Smith, R., Schwarz, G. & Moore, R.
2007. The role of headwater streams in downstream water quality. Journal of
the American Water Resources Association 43(1): 41-59.
Allan, J.D. & Castillo, M.M. 2007. Stream Ecology.
Netherlands: Springer.
Baillie, B. & Davies, T. 2002. Influence of large woody debris
on channel morphology in native forest and pine plantation streams in the
Nelson region, New Zealand. New Zealand Journal of Marine and Freshwater
Research 36: 763-774.
Bing, H.,
Wu, Y., Zhou, J., Ming, L., Sun, S. & Li, X. 2014. Atmospheric deposition
of lead in remote high mountain of eastern Tibetan Plateau, China. Atmospheric
Environment 99: 425-435.
Burrows, R.M., Magierowski, R.H., Fellman, J.B. & Barmuta, L.A.
2012. Woody debris input and function in old-growth and clear-felled headwater
streams. Forest Ecology Management 286: 73-80.
Caplat, C., Texier, H., Barillier,
D. & Lelievre, C. 2005. Heavy metals mobility in harbour contaminated sediments: The case of Port-en-Bessin. Marine Pollution
Bulletin 50: 504-511.
Chen, X., Wei, X., Scherer, R., Luider,
C. & Darlington, W. 2006. A watershed scale assessment of in-stream large
woody debris patterns in the southern interior of British Columbia. Forest
Ecology and Management 229(1): 50-62.
Colin, V., Villegas, L. & Abate, C. 2012. Indigenous
microorganisms as potential bioremediators for
environments contaminated with heavy metals. International Biodeterioration & Biodegradation 69: 28-37.
Farkas, A., Erratico, C. & Vigano, L. 2007. Assessment of the environmental
significance of heavy metal pollution in surficial sediments of the River Po. Chemosphere 68: 761-768.
Gadd, G. 2010. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 156: 609-643.
Gomi, T., Sidle, R. & Rechardson, J.
2002. Understanding processes and downstream linkages of headwater systems. Bioscience 52(10): 905-916.
Gonçalves, J. & Callisto, M. 2013.
Organic-matter dynamics in the riparian zone of a tropical headwater stream in
Southern Brasil. Aquatic Botany 109: 8-13.
Graça, M. 2001. The role of invertebrates on leaf litter decomposition
in streams - A review. International Review of Hydrobiology 86(4-5):
383-393.
Harmon, M. & Sexton, J. 1996. Guidelines for Measurements of
Woody Detritus in Forest Ecosystems (US LTER Publication No. 20). US LTER
Network office, University of Washington, Seattle, WA, USA.
He, J., Yang, W., Li, H., Xu, L., Ni, X., Tan, B., Zhao, Y. &
Wu, Y. 2015. Forest gaps inhibit foliar litter Pb and
Cd release in winter and inhibit Pb and Cd
accumulation in growing season in an Alpine Forest. PLoS ONE 10(6): e0131528. doi:
10.1371/journal.pone.0131528.
Hu, J., Zhou, S., Wu, P. & Qu, K. 2017. Assessment of the
distribution, bioavailability and ecological risks of heavy metals in the lake
water and surface sediments of the Caohai plateau
wetland, China. PloS ONE 12(12):
e0189295.
Jackson, K. & Wohle, E. 2015.
Instream wood loads in montane forest streams of the Colorado Front Range, USA. Geomorphology 234: 161-170.
Lepori, F., Palm, D. & Malmqvist, B. 2005.
Effects of stream restoration on ecosystem functioning: Detritus retentiveness
and decomposition. Journal of Applied Ecology 42: 228-238.
Loska, K. & Wiechuła, D. 2003.
Application of principal component analysis for the estimation of source of
heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 51: 723-733.
Ma, X., Zuo, H., Tian, M., Zhang, L., Meng, J., Zhou, X., Min, N., Chang, X. & Liu, Y. 2016.
Assessment of heavy metals contamination in sediments from three adjacent
regions of the Yellow River using metal chemical fractions and multivariate
analysis techniques. Chemosphere 144: 264-272.
Mccoll, R. 1974. Self-purification of small freshwater streams:
Phosphate, nitrate, and ammonia removal. New Zealand Journal of Marine and
Freshwater Research 8(2): 375-388.
Nakano, S. & Murakami, M. 2001. Reciprocal subsidies: Dynamic
interdependence between terrestrial and aquatic food webs. Proceedings of
the National Academy of Sciences 98(1): 166-170.
Passos, E., Alves, J., Garcia, C. & Costa, A. 2011. Metal
fractionation in sediments of the Sergipe River, Northeast, Brazil. Journal
of the Brazilian Chemical Society 22(5): 828-835.
Peng, Y., Yang, W., Wang, B., Zhang, H., Yue, K. & Wu, F.
2015. Heavy metal output and content of headwater streams in an alpine forest
in the upper reaches of the Yangtze River. Fresenius Environmental Bulletin 24(1):
132-138.
Pennington, P. & Watmough, S. 2015.
The biogeochemistry of metal- contaminated peatlands in Sudbury, Ontario,
Canada. Water, Air, and Soil Pollution 226: 326.
Perez, J., Descals, E. & Pozo, J. 2012. Aquatic hyphomycete communities associated with decomposing alder leaf litter in reference
headwater streams of the Basque Country (northern Spain). Microbiology
Ecology 64: 279-290.
Pulatsü, S. & Topçu, A. 2015. Review of 15
years of research on sediment heavy metal contents and sediment nutrient
release in inland aquatic ecosystems, Turkey. Journal of Water Resource and
Protection 7: 85-100.
Richardson, J. & Danehy, R.A. 2007.
Synthesis of the ecology of headwater streams and their Riparian zones in
temperate forests. Forest Science 53(2): 131-147.
Ryan, S., Bishop, E. & Daniels, J. 2014. Influence of large
wood on channel morphology and sediment storage in headwater mountain streams,
Fraser Experimental Forest, Colorado. Geomorphology 217: 73-88.
Singh, S. & Mishra, A. 2014. Spatiotemporal analysis of the
effects of forest covers on stream water quality in Western Ghats of peninsular
India. Journal of Hydrology 519: 214- 224.
Soares, E. & Soares, H. 2013. Cleanup of
industrial effluents containing heavy metals: A new opportunity of valorising the biomass produced by brewing industry. Applied
Microbiology and Biotechnology 97(15): 6667-6675.
Souza, A., Fonseca, D., Libório, R.
& Tanaka, M. 2013. Influence of riparian vegetation and forest structure on
the water quality of rural low-order streams in SE Brazil. Forest Ecology
and Management 298: 12-18.
Stead-dexter, K. & Ward, N. 2004.
Mobility of heavy metals within freshwater sediments affected by motorway stormwater. Science of the Total Environment 334-335:
271-277.
Stevens, V. 1997. The ecological role of coarse woody debris: An
overview of the ecological importance of CWD in BC Forests. British Columbia:
Ministry of Forests Research Program. Working Paper 30.
Tang, W., Shan, B., Zhang, W., Zhang, H., Wang, L. & Ding, Y.
2014. Heavy metal pollution characteristics of surface sediments in different
aquatic ecosystems in eastern China: A comprehensive understanding. PLoS ONE 9(9): e108996. doi:
10.1371/journal.pone.0108996.
Tank, J., Rosi-Marshall, E., Griffiths,
N., Entrekin, S. & Stephen, M. 2010. A review of allochthonous organic matter dynamics and metabolism in streams. The North American Benthological Society 29(1): 118-146.
Tokatli, C., Kose, E., Cicek,
A. & Uysal, K. 2013. Copper, zinc and lead
concentrations of epipelic diatom frustules in Porsuk Stream (Sakarya River
Basin, Turkey). Russian Journal of Ecology 44(4): 349-352.
Wallace, J.,
Eggert, S., Meyer, J. & Webster, J. 1997. Multiple trophic levels of a forest
stream linked to terrestrial litter inputs. Science 277: 102-104.
Water Quality-Guidance on Sampling Techniques (HJ 494-2009). 2009. Ministry of Environmental Protection of
the People’s Republic of China.
Water Quality-Digestion of Total Metals-Microwave
Assisted Acid Digestion Method (HJ 678-2013). 2013. Ministry of
Environmental Protection of the People’s Republic of China.
West,
P.W. 2009. Tree and Forest Measurement. Switzerland: Springer
International Publishing.
Wojtkowska, M., Bogacki, J. & Witeska, A.
2016. Assessment of the hazard posed by metal forms in water and sediments. Science
of the Total Environment 551-552: 387-392.
Wu,
B., Wang, G., Wu, J., Fu, Q. & Liu, C. 2014. Sources of heavy metals in
surface sediments and an ecological risk assessment from two adjacent plateau
reservoirs. PLoS ONE 9(7): e102101. doi: 10.1371/journal.pone.0102101.
Yang,
W. & Wang, K. 2003. Advances in soil ecosystem process of subalpine forest
in Western Sichuan. World Science- Technology Research and Development 25(5):
33-40.
*Corresponding
author; email: wufzchina@163.com