Sains Malaysiana 48(8)(2019): 1575–1581
http://dx.doi.org/10.17576/jsm-2019-4808-02
Dependency of Biological Contaminants
on Temperature and Relative Humidity within Praying Halls of Mosques
(Pergantungan
Pencemaran Biologi pada Suhu dan
Kelembapan di dalam
Ruang Solat Masjid)
NUR BAITUL
IZATI
RASLI1,
NOR
AZAM
RAMLI1,
MOHD
RODZI
ISMAIL2*
& SYABIHA SHITH1
1Environmental Assessment
and Clean Air Research (EACAR), School of Civil Engineering, Engineering
Campus, Universiti Sains
Malaysia, 14300 Nibong Tebal,
Pulau Pinang, Malaysia
2School of Housing
Building and Planning, Universiti Sains Malaysia, 11800 USM, Pulau
Pinang, Malaysia
Received:
20 January 2019/Accepted: 12 May 2019
ABSTRACT
The widespread use of Air Conditioning
Split Units (ACSU) to cool the air inside mosques
may pose potential adverse health effects, secondary to exposure
to biological contaminants. To address this issue, the dependencies
of biological contaminants (bacteria and fungi) on temperature (T)
and relative humidity (RH)
of the 'mosques’ indoor air were evaluated. A total of 25 mosques
were investigated during the periods in which their respective congregators
were performing Zohor or
Friday, and Asar prayers.
The recorded average indoor bacteria and fungi concentrations were
382.6±143.9 cfu/m3 and 229.4±165.5 cfu/m3,
respectively. However, the study found that masses of bacteria aerosol
within the indoors of certain mosques (10 out of 17 ACSU mosques
and 1 out of 8 non-ACSU mosques) exceeded the limit recommended
by Malaysian standard for indoor air quality (500 cfu/m3). Meanwhile, the results of regression
analyses suggested that T and RH of the indoor air have high influence
on airborne bacteria and fungi. The variations in bacteria concentrations
due to the influence of T and RH in
ACSU
mosques (T= 92.3%; RH= 90.3%) were higher than in
non-ACSU mosques (T= 82.75%; RH=
81.7%) whereas the variations in fungi concentrations in non-ACSU mosques
(T=70.45%; RH= 71.45%) were higher than in ACSU mosques
(T= 66.05%; RH= 60.7%). This research shows that the growth of bacteria
and fungi within the prayer halls of mosques in Malaysia is very
much dependent on its indoor T and RH.
Keywords: Biological contaminants;
indoor air; mosque; relative humidity; temperature
ABSTRAK
Penggunaan meluas Penyaman
Udara Unit Pisah
(ACSU)
untuk menyejukkan
udara di dalam masjid boleh menimbulkan potensi kesan kesihatan
yang buruk, membawa
pendedahan kepada bahan cemar biologi. Bagi menangani isu ini,
kebergantungan bahan
cemar biologi (bakteria dan kulat)
terhadap suhu
(T) dan kelembapan relatif (RH) daripada
udara dalaman
masjid telah dinilai. Sebanyak 25 buah masjid telah dikaji dalam tempoh
para jemaah masing-masing
sedang melaksanakan solat Zohor atau Jumaat, dan Asar. Purata
kepekatan bakteria
dan kulat di ruang
dalaman yang direkodkan
masing-masing adalah 382.6 ± 143.9
cfu/m3 dan
229.4 ± 165.5 cfu/m3. Walau bagaimanapun, kajian ini mendapati
bahawa jisim
aerosol bakteria di dalam ruang dalaman bangunan
masjid tertentu (10 daripada
17 masjid ACSU dan 1 daripada
8 masjid bukan ACSU) melebihi
had yang disyorkan oleh
piawai Malaysia bagi kualiti udara dalaman
(500 cfu/m3). Sementara itu,
hasil daripada
analisis regresi menunjukkan bahawa T dan RH daripada
udara dalaman mempunyai
pengaruh yang tinggi
terhadap bakteria bawaan udara dan
kulat. Variasi
dalam kepekatan bakteria akibat pengaruh T dan RH di
masjid ACSU (T = 92.3%; RH = 90.3%) adalah
lebih tinggi
daripada di masjid bukan ACSU
(T = 82.75%; RH = 81.7%) manakala
variasi dalam
kepekatan kulat di masjid bukan ACSU (T = 70.45%; RH =
71.45%) adalah lebih
tinggi daripada di masjid ACSU
(T = 66.05%; RH = 60.7%). Kajian ini
menunjukkan bahawa
pertumbuhan bakteria dan kulat di dalam
dewan solat masjid di Malaysia sangat
bergantung kepada
T dan RH bagi udara dalamannya.
Kata
kunci: Bahan
cemar biologi; kelembapan relatif; masjid; suhu; udara dalaman
REFERENCES
Alananbeh, K.M., Boquellah, N., Al Kaff, N. &
Al Ahmadi, M. 2017. Evaluation of aerial microbial
pollutants in Al-Haram Al-Nabawi during
pilgrimage of 2013. Saudi Journal of Biological Sciences
24: 217-225.
Backman,
H., Hedman, L., Jansson,
S.A., Lindberg, A., Lundbäck, B. &
Rönmark, E. 2014. Prevalence trends in respiratory symptoms
and asthma in relation to smoking-two cross-sectional studies ten
years apart among adults in Northern Sweden. World Allergy Organization
Journal 7(1): 1-10.
Bornehag,
C.G., Blomquist, G., Gyntelberg,
F., Jarvholm, B., Malmberg,
P., Nordvall, L. & Sundell,
J. 2001.
Dampness in buildings and health. Indoor
Air 11(2): 72-86.
DM.
2001.
Department of Microbiology. Mount
Sinai Hospital. Procedure Manual Toronto
Medical Laboratories. Sterility Testing Manual: Air Sampling.
Canada. 17-18. https://eportal. mountsinai.ca/Microbiology//manual/ster/mi_ster.pdf.
DOSH. 2010.Department
of Occupational Safety and Health. Industry code of practice on
indoor air quality. Malaysia: Ministry of Human Resources, pp. 1-39.
Hameed,
A.A. & Habeeballah, T. 2013. Air microbial contamination at the holy mosque, Makkah, Saudi Arabia.
Current World Environment 8(2): 179-187.
Hamimah,
S., Baba, D. & Abd. Mutalib, L. 2010. Indoor air quality issues for non-industrial
work place. International Journal of Research and Review in Applied
Sciences 5(3): 235-244.
Junninen,
H., Niska, H., Tuppurainen, K., Ruuskanen,
J. & Kolehmainen, M. 2004. Methods for imputation of missing values in air quality data sets.
Atmospheric Environment 38(18): 2895-2907.
Kamaruzzaman,
S.N. & Razak, R.A. 2011. Measuring indoor air quality performance in Malaysian government kindergarten.
Journal of Building Performance 2(1): 70-79.
Kousar,
S., Mustafa.
G. & Jamil, A. 2013. Microbial xylosidases:
Production and biochemical characterization. Pakistan Journal
of Life and Social Science 11(2): 85-95.
Makhtar,
N.K., Ismail, A.R., Jusoh, N. & Puvanasvaran, A.P. 2010. Thermal comfort in technical school: Physical
measurement approach. National Conference in Mechanical Engineering
Research and Postgraduate Studies (2nd NCMER 2010). pp. 755-761.
Mashat,
B. 2015.
Indoor and outdoor microbial aerosols at the holy mosque: A case
study. Atmospheric Pollution Research 6(6): 990-996.
Meklin,
T., Reponen, T., Toivola,
M., Koponen, V., Husman,
T., Hyvärinen, A. & Nevalainen,
A. 2002.
Size distributions of airborne microbes in moisture-damaged
and reference school buildings of two construction types.
Atmospheric Environment 36(39-40): 6031-6039.
Mendell,
M.J., Macher, J.M. & Kumagai,
K. 2014.
Indoor dampness and mold as indicators of respiratory health risks,
Part 3: A synthesis of published data on indoor measured moisture
and health. International Society of Indoor Air Quality and Climate
(ISIAQ) Proceedings of Indoor Air 1: 727-734.
Mouli,
P., Mohan, S. & Reddy, S. 2005. Assessment of microbial (bacteria) concentrations
of ambient air at semi-arid urban region: Influence of meteorological
factors. Applied Ecology and Environmental Research 3(2):
139-149.
MS.
2014.
Malaysian Standard. MS 2577: 2014. Architecture
and asset management of masjid - Code of practice. Department
of Standards Malaysia. Malaysia.
Mukaka, M. 2012. A guide to appropriate use of correlation coefficient in medical research.
Malawi Medical Journal 24(3): 69-71.
Mustapha,
A.A., Ayop, S.M., Ahmad, M.K. & Ismail,
F. 2008. A thermal comfort study in naturally ventilated school building in
Malaysia. Built Environment Journal
5(2): 66-82.
Nahar,
N. & Mahyudin, N.A. 2018. Microbiological
quality of food contact surfaces (spoons) at selected restaurants
in Klang Valley, Malaysia. Sains
Malaysiana 47(7): 1541-1545.
NIOSH. 1998. National
Institute for Occupational Safety and Health. Bioaerosol
sampling (Indoor Air) 0800: Culturable
organisms bacteria, fungi, thermophilic actinomycetes,
NIOSH Manual of Analytical Methods (NMAM), 4th ed. Washington, D.C.:
National Institute for Occupational Safety and Health.
Noman, F.G., Kamsah, N. & Kamar, H.M. 2016.
Improvement of thermal comfort inside a mosque building. Jurnal Teknologi 78(8-5):
9-18.
Norhidayah, A., Chia-Kuang,
L., Azhar, M.K. & Nurulwahida,
S. 2013. Indoor air quality and sick building
syndrome in three selected buildings. Procedia Engineering
53: 93-98.
Rajasekar, A. & Balasubramanian, R. 2011. Assessment of
airborne bacteria and fungi in food courts. Building and
Environment 46(10): 2081-2087.
Ross, T. &
Nichols, D.S. 2014.
Ecology of bacteria and fungi in foods: Influence of temperature.
In. Encyclopedia of Food Microbiology, edited by Batt, C.A.
& Tortorello, M.L. 2nd ed. Amsterdam:
Academic Press. pp. 602-609.
Sulaiman, N., Abdullah,
M. & Chieu, P.L.P. 2005. Concentration
and composition of PM10 in outdoor and indoor air in
industrial area of Balakong Selangor,
Malaysia. Sains Malaysiana 34(2):
43-47.
Zock, J.P., Jarvis, D., Luczynska, C., Sunyer, J. &
Burney, P. 2002. Housing characteristics, reported
mold exposure, and asthma in the European community respiratory
health survey. Journal of Allergy and Clinical Immunology
110(2): 285-292.
*Corresponding author;
email: rodzi@usm.my
|