Sains Malaysiana 48(8)(2019): 1635–1642

http://dx.doi.org/10.17576/jsm-2019-4808-09

 

Chemical Analysis on the Honey of Heterotrigona itama and Tetrigona binghami from Sarawak, Malaysia

(Analisis Kimia pada Madu Heterotrigona itama dan Tetrigona binghami dari Sarawak, Malaysia)

 

PEARLY WONG, HII SIEW LING*, KOH CHEN CHUNG, THOMAS MOH SHAN YAU & SUZY RINI ANAK GINDI

 

School of Engineering and Technology, University College of Technology Sarawak, No. 1, Jalan Universiti, 96000 Sibu, Sarawak Bumi Kenyalang, Malaysia

 

Received: 25 October 2018/Accepted: 23 May 2019

 

ABSTRACT

This study aims to compare the chemical composition of honey samples produced by Heterotrigona itama and Tetrigona binghami which originated from Sarawak, Malaysia. One hundred and six (106) honey samples were collected from local bee farms and analysed in terms of their chemical profiles. The chemical analysis conducted includes physicochemical composition such as moisture, total phenolic content, sugar, 5-hydroxymethylfurfural (5-HMF), pH and organic acids and proximate analysis which included ash, protein, carbohydrates and energy. Independent T-test was used as a statistical tool to investigate the significant difference between the composition of both honey samples. The results showed that honey samples of Heterotrigona itama and Tetrigona binghami possessed significant difference (p<0.05) in moisture, total phenolic content, fructose, glucose, pH, protein, gluconic acid, acetic acid, ash, carbohydrates and energy. The honey samples of Heterotrigona itama exhibited significantly higher fructose and glucose at the average of 22.00 ± 3.48 g/ 100 g and 23.45 ± 3.23 g/100 g, respectively. Besides, the honey samples also possessed higher pH value, gluconic acid, ash, carbohydrates and energy. Meanwhile, Tetrigona binghami honey samples possessed significantly (p< 0.05) higher moisture content, total phenolic content, protein and acetic acid compared to the Heterotrigona itama’s honey samples. To conclude, the geographical and floral origins of honey are the two important quality parameters which fundamentally affect the physical-chemical properties as well as biological activities of honey samples.

 

Keywords: Heterotrigona itama; Sarawak; species; stingless bee honey; Tetrigona binghami

 

ABSTRAK

Kajian ini bertujuan untuk membandingkan komposisi kimia sampel madu yang dihasilkan oleh Heterotrigona itama dan Tetrigona binghami yang berasal dari Sarawak, Malaysia. Seratus enam (106) sampel madu diambil dari ladang lebah tempatan dan dianalisis daripada segi profil kimia mereka. Analisis kimia dijalankan termasuk komposisi fizikokimia seperti kelembapan, jumlah kandungan fenolik, gula, 5-hidroksimetilfurfural (5-HMF), pH dan asid organik dan analisis proksimat termasuk abu, protein, karbohidrat dan tenaga. Ujian-T bebas digunakan sebagai alat statistik untuk mengkaji perbezaan yang ketara antara komposisi kedua-dua sampel madu. Hasil menunjukkan bahawa sampel madu Heterotrigona itama dan Tetrigona binghami mempunyai perbezaan yang signifikan (p<0.05) daripada segi kelembapan, jumlah kandungan fenolik, fruktosa, glukosa, pH, protein, asid glukonik, asid asetik, abu, karbohidrat dan tenaga. Sampel madu Heterotrigona itama menunjukkan fruktosa dan glukosa yang lebih tinggi masing-masing pada purata 22.00 ± 3.48 g/100 g dan 23.45 ± 3.23 g/100 g. Selain itu, sampel madu kajian juga memiliki nilai pH lebih tinggi, asid glukonik, abu, karbohidrat dan tenaga. Sementara itu, sampel madu Tetrigona binghami mempunyai kandungan lembapan yang tinggi (p<0.05) secara signifikan, jumlah kandungan fenolik, protein dan asid asetik berbanding sampel madu Heterotrigona itama. Sebagai kesimpulan, asal-usul geografi dan bunga madu adalah dua parameter penting yang pada dasarnya mempengaruhi sifat fizikal-kimia serta aktiviti biologi sampel madu.

 

Kata kunci: Heterotrigona itama; madu lebah tiada sengat; Sarawak; spesies; Tetrigona binghami

REFERENCES

Aljadi, A.M. & Kamaruddin, M.Y. 2004. Evaluation of the phenolic contents and antioxidant capacities of two Malaysian floral honeys. Food Chemistry 85(4): 513-518.

Alqarni, A.S., Owayss, A.A., Mahmoud, A.A. & Hannan, M.A. 2012. Mineral content and physical properties of local and imported honeys in Saudi Arabia. Journal of Saudi Chemical Society 18(5): 618-625.

Alvarez-Suarez, J.M., Tulipani, S., Dı´az, D., Estevez, Y., Romandini, S., Giampieri, F., Damiani, E., Astolfi, P., Bompadre, S. & Battino, M. 2010. Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food and Chemical Toxicology 48: 2490-2499.

AOAC. 2016. Official Methods of Analysis of AOAC International. 20th ed. Association of Analytical Communities, Gaithersburg, MD, USA.

Ares, A.M., Nozal, M.J. & Bernal, J. 2013. Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds. Journal of Chromatography A 1313: 78-95.

Badolato, M., Carullo, G., Cione, E., Aiello, F. & Caroleo, M.C. 2017. From the hive: Honey, a novel weapon against cancer. European Journal of Medicinal Chemistry 142: 290-299.

Biluca, F.C., Braghini, F., Gonzaga, L.V., Costa, A.C.O. & Fett, R. 2016. Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). Journal of Food Composition and Analysis 50: 61-69.

Boussaid, A., Chouaibi, M., Rezig, L., Hellal, R., Donsì, Ferrari, G. & Hamdi, S. 2018. Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arabian Journal of Chemistry 11(2): 265-274.

Cherchi, A., Spanedda, L., Tuberoso, C. & Cabras, P. 1994. Solid-phase extraction and high-performance liquid chromatographic determination of organic acids in honey. Journal of Chromatography A 669(1-2): 59-64.

Chuttong, B., Chanbang, Y., Sringarm, K. & Burgett, M. 2016. Physicochemical profiles of stingless bee (Apidae: Meliponini) honey from South East Asia (Thailand). Food Chemistry 192: 149-155.

Codex, A. 2001. Revised Codex Standard for Honey. Codex Alimentarius.

Cortopassi-Laurino, M., Imperatriz-Fonseca, V.L., Roubik, D.W., Dollin, A., Heard, T., Aguilar, I., Venturieri, G.C., Eardley, C. & Nogueira-Neto, P. 2006. Global meliponiculture: Challenges and opportunities. Apidologie 37(2): 275-292.

Da Silva, I.A.A., Da Silva, T.M.S., Camara, C.A., Queiroz, N., Magnani, M., de Novais, J.S. & de Souza, A.G. 2013. Phenolic profile, antioxidant activity and palynological analysis of stingless bee honey from Amazonas, Northern Brazil. Food Chemistry 141(4): 3552-3558.

Escuredo, O., Dobre, I., Fernández-González, M. & Seijo, M.C. 2014. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chemistry 149: 84-90.

Estevinho, L., Pereira, A.P., Moreira, L., Dias, L.G. & Pereira, E. 2008. Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food and Chemical Toxicology 46(12): 3774-3779.

Fuenmayor, C.A., Díaz-Moreno, A.C., Zuluaga-Domínguez, C.M. & Quicazán, M.C. 2013. Honey of Colombian stingless bees: Nutritional characteristics and physicochemical quality indicators. In Pot Honey: A Legacy of Stingless Bees, edited by Vit, P., Pedro, S. & Roubik, D. New York: Springer. pp. 383-394.

Guerrini, A., Bruni, R., Maietti, S., Poli, F., Rossi, D., Paganetto, G. & Sacchetti, G. 2009. Ecuadorian stingless bee (Meliponinae) honey: A chemical and functional profile of an ancient health product. Food Chemistry 11(4): 1413-1420.

Gül, A. & Pehlivan, T. 2018. Antioxidant activities of some monofloral honey types produced across Turkey. Saudi Journal of Biological Sciences 25(6): 1056-1065.

Jaapar, M.F., Halim, M., Mispan, M.R., Jajuli, R., Saranum, M.M., Zainuddin, M.Y., Ghazi, R. & Ghani, I.A. 2016. The diversity and abundance of stingless bee (Hymenoptera: Meliponini) in Peninsular Malaysia. Advances in Environmental Biology 10(9): 1-9.

Kek, S.P., Chin, N.L., Tan, S.W., Yusof, Y.A. & Chua, L.S. 2017. Classification of honey from its bee origin via chemical profiles and mineral content. Food Analytical Methods 10(1): 19-30.

Kek, S.P., Chin, N.L., Yusof, Y.A., Tan, S.W. & Chua, L.S. 2014. Total phenolic contents and colour intensity of Malaysian honeys from the Apis spp. and Trigona spp. bees. Agriculture and Agricultural Science Procedia 2: 150-155.

Khalil, M.I., Mahaneem, M., Jamalullail, S.M.S., Alam, N. & Sulaiman, S.A. 2011. Evaluation of radical scavenging activity and colour intensity of nine Malaysian honeys of different origin. Journal of ApiProduct and ApiMedical Science 3(1): 4-11.

Kumar, A., Gill, J.P.S., Bedi, J.S., Manav, M., Ansari, M.J. & Walia, G.S. 2018. Sensorial and physicochemical analysis of Indian honeys for assessment of quality and floral origins. Food Research International 108: 571-583.

Leonhardt, S.D., Schmitt, T. & Blüthgen, N. 2011. Tree resin composition, collection behavior and selective filters shape chemical profiles of tropical bees (Apidae: Meliponini). PLoS ONE 6(8): e23445.

Mendes, E., Proenca, E.B., Ferreira, I.M.P.L.V.O. & Ferreira, M.A. 1998. Quality evaluation of Portuguese honey. Carbohydrate Polymers 37(3): 219-223.

Michener, C.D. 2013. The meliponini. In Pot Honey: A Legacy of Stingless Bees, edited by Vit, P., Pedro, S. & Roubik, D. New York: Springer. pp. 3-17.

Moniruzzaman, M., Chowdhury, M.A.Z., Rahman, M.A., Sulaiman, S.A. & Gan, S.H. 2014. Determination of mineral, trace element, and pesticide levels in honey samples originating from different regions of Malaysia compared to Manuka honey. BioMed Research International 2014: 359890.

Ramachandran, A., Snehalatha, C., Mary, S., Mukesh, B., Bhaskar, A.D. & Vijay, V. 2006. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent Type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 49(2): 289-297.

Rasmussen, C. & Cameron, S.A. 2009. Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biological Journal of the Linnean Society 99(1): 206-232.

Sousa, J.M., de Souza, E.L., Marques, G., Meireles, B., de Magalhães Cordeiro, Â.T., Gullón, B. & Magnani, M. 2016. Polyphenolic profile and antioxidant and antibacterial activities of monofloral honeys produced by Meliponini in the Brazilian semiarid region. Food Research International 84: 61-68.

Standard, M. 2017. MS 2683: 2017. Kelulut (Stingless bee) honey-specification. Department of Standards Malaysia.

Tuksitha, L., Chen, Y.L.S., Chen, Y.L., Wong, K.Y. & Peng, C.C. 2018. Antioxidant and antibacterial capacity of stingless bee honey from Borneo (Sarawak). Journal of Asia-Pacific Entomology 21(2): 563-570.

Yeow, S.H.C., Chin, S.T.S., Yeow, J.A. & Tan, K.S. 2013. Consumer purchase intentions and honey related products. Journal of Marketing Research & Case Studies c1-15. http:// dx.doi.org/10.5171/2013.197440.

 

*Corresponding author; email: hiisl@ucts.edu.my

 

 

 

 

previous