Sains Malaysiana 48(8)(2019):
1643–1654
http://dx.doi.org/10.17576/jsm-2019-4808-10
Amino Acid, Mineral, and
Degree of Hydrolysis of Vinegar-Egg and Its Lipid Lowering and Antioxidant
Effects in vitro and in vivo
(Asid Amino, Mineral
dan Tahap Hidrolisis Cuka Telur serta Kesan Penurunan Lipid
dan Antioksidannya
secara in vitro dan in vivo)
YUE ZHENG1,2, KUN LIU1,2, WANGHUI YAN1,2, GUOHUA WEI1,2, XINYU CHAO1,2, XIANG YAN1,2 & QINGMEI ZENG1,2*
1School
of Food and Biological Engineering, Hefei University of Technology, Hefei
230009, Anhui, China
2Engineering
Research Center of Bio-Process, Ministry of Education, Hefei University of
Technology, Hefei 230009, Anhui, China
Received:
4 December 2018/Accepted: 23 May 2019
ABSTRACT
Vinegar-egg, a product
derived from vinegar and eggs, is a healthy beverage that has been popular in
China for a long time. It contains abundant essential and hydrophobic amino
acids, and minerals especially Ca and Mg via chemical analyses. The results
showed changes of degree of hydrolysis (DH) by different soaking time. In vitro, vinegar-egg showed higher bile acid binding capacity
and exhibited inhibition percentages of cholesterol micellar solubility. The DPPH radical-scavenging activity and lipid peroxidation inhibitory
activity of vinegar-egg were evaluated, respectively. Additionally, after a
11-week experiment in vivo, high-fat diet (HFD)
fed mice had higher weight gains, adipose tissue (EAT and SAT)
and serum/liver lipids than the standard chow diet (SCD)
fed ones, but vinegar-egg supplementation decreased (p < 0.05) them which
may resulted in hyperlipidemia. Serum alanine aminotransferase (ALT)
value and aspartate aminotransferase (AST) value in HFD-fed
mice were reduced (p < 0.05) by supplementing vinegar-egg due to decreased
(p < 0.05) malonaldehyde (MDA) levels, increased
superoxide dismutase (SOD) and glutathione peroxidase (GPH-Px)
activities. Compared with those fed the SCD, HFD induced
extensive intrahepatic lipid droplets and hepatic necrosis. However, supplementing
the HFD with vinegar-egg attenuated these anomalies in a
dose-dependent manner. Taken together, the component profiles of vinegar-egg
contributed the lipid lowering and antioxidant effects on HFD-fed
mice. Hence, vinegar-egg is expected to be a useful ingredient in
physiologically functional foods for the treatment of hyperlipidemia.
Keywords: Antioxidant
capacity; high-fat diet fed mice; hyperlipidemia; lipid-lowering effect;
vinegar-egg
ABSTRAK
Cuka telur, produk yang
diperoleh daripada cuka dan telur adalah minuman kesihatan yang
popular di China sejak dulu. Ia mengandungi banyak asid amino yang
penting dan hidrofobik, serta mineral seperti Ca dan Mg melalui
analisis kimia. Keputusan menunjukkan tahap perubahan hidrolisis
(DH) mengikut masa rendaman berbeza. Melalui in vitro, cuka telur menunjukkan kemampuan pengikat
asid hempedu lebih tinggi dan mempamerkan peratusan perencatan keterlarutan
misel kolesterol. Aktiviti radikal-skaveng DPPH dan
aktiviti perencatan lipid pemperoksidaan cuka-telur telah dinilai.
Selain itu, selepas uji kaji selama 11 minggu secara in vivo,
tikus yang diberi makan diet tinggi lemak (HFD) menunjukkan peningkatan berat badan
yang lebih tinggi, tisu adipos (EAT dan SAT)
dan lipid serum/hati daripada yang diberi makan diet chow standard
(SCD),
tetapi penambahan cuka-telur menurun (p) < 0.05) ia dan boleh
mengakibatkan hiperlipidemia. Nilai serum alanine aminotransferase
(ALT)
dan nilai aminotransferase (AST) aspartate pada tikus yang
diberi HFD telah berkurang (p < 0.05) dengan penambahan cuka-telur
disebabkan penurunan (p < 0.05) tahap malonaldehid (MDA),
meningkatkan aktiviti peroksidase dismutase (SOD)
dan glutation superoksida (SOD). Berbanding dengan yang diberi makan
SCD, HFD mengaruh titisan lipid menyeluruh
intrahepar dan nekrosis hepatik. Walau bagaimanapun, penambahan
HFD dengan
cuka-telur dapat mengurangkan anomali ini dengan cara kebergantungan-dos.
Bersama, profil komponen cuka-telur menyumbang kepada pengurangan
lipid dan kesan antioksidan ke atas tikus diberi HFD. Oleh yang demikian, cuka-telur
dijangka akan menjadi bahan yang berguna dalam makanan berfungsi
fisiologi untuk merawat hiperlipidemia.
Kata kunci: Cuka-telur;
hiperlipidemia; kemampuan antioksidan; kesan pengurangan
lipid; tikus berdiet tinggi lemak
REFERENCES
Alsheikh-Ali,
A.A., Kuvin, J.T. & Karas, R.H. 2004. Risk of adverse events with fibrates. American Journal of Cardiology 94: 935-938.
Alhaj,
O.A., Kanekanian, A.D., Peters, A.C. & Tatham, A.S. 2010.
Hypocholesterolaemic effect of Bifidobacterium animalis subsp. lactis (Bb12)
and trypsin casein hydrolysate. Food Chemistry 123(2): 430-435.
Betts,
M.J. & Russell, R.B. 2007. Amino acid properties and consequences of
substitutions. Bioinformatics for Geneticists: A Bioinformatics Primer for
the Analysis of Genetic Data. 2nd ed. edited by Barnes, M.R. New York:
Wiley. pp. 289-316.
Bhat,
Z.F., Sunil, K. & Bhat, H.F. 2015. Bioactive peptides of animal origin: A
review. Journal of Food Science and Technology-Mysore 52: 5377-5392.
Chalamaiah,
M., Hemalatha, R., Jyothirmayi, T., Diwan, P.V., Uday, K.P., Chetan, N. &
Dinesh, K.B. 2014. Immunomodulatory effects of protein hydrolysates from rohu (Labeo
rohita) egg in BALB/c mice. Food Research International 62:
1054-1061.
Chalamaiah,
M., Yu, W.L. & Wu, J.P. 2018. Immunomodulatory and anticancer protein
hydrolysates (peptides) from food proteins: A review. Food Chemistry 245:
205-222.
Chen,
J., Wu, Y., Yang, C.M., Xu, X.J. & Meng, Y.C. 2017. Antioxidant and
hypolipidemic effects of soymilk fermented via Lactococcus acidophilus MF204. Food & Function 8: 4414-4420.
Chen,
J.J., Mao, D., Yong, Y.Y., Li, J.L., Wei, H. & Lu, L. 2012.
Hepatoprotective and hypolipidemic effects of water-soluble polysaccharidic
extract of Pleurotuseryngii. Food Chemistry 130(3): 687-694.
Francisco,
H.C., Jorge, C.R.R., David, B.A. & Maira, R.S.C. 2016. Potential
therapeutic applications of Mucuna pruriens peptide fractions purified
by high-performance liquid chromatography as angiotensin-converting enzyme
inhibitors, antioxidants, antithrombotic and hypocholesterolemic agents. Journal
of Medicinal Food 19(2): 187-195.
Gu,
F., Jinmoon, K., Khizar, H., Xia, S., Feng, B. & Zhang, X. 2009.
Characteristics and antioxidant activity of ultrafiltrated Maillard reaction
products from a casein-glucose model system. Food Chemistry 117(1):
48-54.
Howard,
A. & Udenigwe, C.C. 2013. Mechanisms and prospects of food protein
hydrolysates and peptide-induced hypolipidaemia. Food & Function 4:
40-51.
Hogan,
S., Zhang, L., Li, J., Wang, H. & Zhou, K. 2009. Development of antioxidant
rich peptides from milk protein by microbial proteases and analysis of their
effects on lipid peroxidation in cooked beef [J]. Food Chemistry 117(3):
438-443.
Huang,
Y.L., Chow, C.J. & Tsai, Y.H. 2012. Composition, characteristics, and in
vitro physiological effect of the watersoluble polysaccharides from Cassia
seed. Food Chemistry 134: 1967-1972.
Iranzo,
O. 2011. Manganese complexes displaying superoxide dismutase activity: A
balance between different factors. Bioorganic Chemistry 39(2): 73-87.
Kobayashi,
H., Hirabayashi, Y., Murakami, H. & Ueda, T. 2009. Anti-obesity effects of
amino acid in high-fat diet induced obese mice. FASEB J 23: 227.
Lee,
H.S., Lee, Y.J., Chung, Y.H., Nam, Y., Kim, S.T., Park, E.S., Hong, S.M. &
Yang, Y.K. 2015. Beneficial effects of red yeast rice on high-fat diet-induced
obesity, hyperlipidemia, and fatty liver in mice. Journal of Medicinal Food 18:
1095-1102.
Lin,
Y.H., Tsai, J.S. & Chen, G.W. 2017. Purification and identification of
hypocholesterolemic peptides from freshwater clam hydrolysate with in vitro gastrointestinal
digestion. Journal of Food Biochemistry 41(3): 1-8.
Liu,
K.L., Zhao, Y., Chen, F.S. & Fang, Y. 2015. Purification and identification
of Se-containing antioxidative peptides from enzymatic hydrolysates of
Se-enriched brown rice protein. Food Chemistry 187: 424-430.
Lu,
C.H., Liao, W.L., Wang, T.Y., Chen, C.C., Chen, Y.H., Tse, S.S., Huang, Y.C.
& Tsai, F.J. 2014. Association of adenosine triphosphate-binding cassette
transporter A1 gene polymorphism with lipid profiles and early-onset Type 2
diabetes. Science Asia 40: 212-218.
Maseko,
T., Howell, K., Dunshea, F.R. & Ng, K. 2014. Selenium-enriched Agaricus
bisporus increases expression and activity of glutathione peroxidase-1 and
expression of glutathione peroxidase-2 in rat colon. Food Chemistry 146:
327-333.
Moayedi,
A., Mora, L., Aristoy, M.C., Safari, M., Hashemie, M. & Toldrá, F. 2018.
Peptidomic analysis of antioxidant and ACE-inhibitory peptides obtained from
tomato waste proteins fermented using Bacillus subtilis. Food Chemistry 250:
180-187.
Navab,
M., Anantharamaiah, G.M., Reddy, S.T., Van Lenten, B.J., Wagner, A.C., Hama,
S., Hough, G. & Bachini, E. 2005. An oral apoJ peptide renders HDL
anti-inflammatory in mice and monkeys and dramatically reduces atherosclerosis
in apolipoprotein E-null mice. Arteriosclerosis Thrombosis and Vascular
Biology 25: 1932-1937.
Nielsen, P.M., Petersen,
D., Dambmann, C., Nielsen, P.M., Petersen, D. & Dambmann, C. 2010. Improved
method for determining food protein degree of hydrolysis. Journal of Food
Science 66(5): 642-646.
Padmavathi, R., Senthilnathan, P., Chodon, D. &
Sakthisekaran, D. 2006. Therapeutic effect of paclitaxel and propolis on lipid
peroxidation and antioxidant system in 7,12 dimethyl benz(a) anthracene-induced
breast cancer in female Sprague Dawley rats. Life Sciences 78:
2820-2825.
Pan,
X., Zhao, Y.Q., Hu, F.Y. & Wang, B. 2016. Preparation and identification of
antioxidant peptides from protein hydrolysate of skate (Raja porosa)
cartilage. Journal of Functional Foods 25: 220-230.
Qian,
Z.J., Jung, W.K., Byun, H.G. & Kim, S.K. 2008. Protective effect of an
antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea
gigas against free radical induced DNA damage. Bioresource Technology 99:
3365-3371.
Ren,
J.Y., Zhao, M.M., Shi, J., Wang, J.S., Jiang, Y.M., Cui, C., Kakuda,
Y. & Xue, J.S. 2008. Purification and identification of antioxidant
peptides from grass carp muscle hydrolysates by consecutive chromatography
and electrospray ionization- mass spectrometry. Food Chemistry
108(2): 727-736.
Shazly,
A.B., He, Z.Y., El-Aziz, M.A., Zeng, M.M., Zhang, S., Qin, F. & Chen, J.
2017. Fractionation and identification of novel antioxidant peptides from
buffalo and bovine casein hydrolysates. Food Chemistry 232: 753-762.
Uchida,
K. & Kawakishi, S. 1992. Sequence-dependent reactivity of histidine
containing peptides with copper (II)/ascorbate. Journal of Agricultural and
Food Chemistry 40: 13-16.
Vaskonen,
T. 2003. Dietary minerals and modification of cardiovascular risk factors. Journal
of Nutritional Biochemistry 14: 492-506.
Wang,
B.K., Liu, W.B., Chao, X. & Li, X.F. 2017. Dietary carbohydrate levels and
lipid sources modulate the growth performance, fatty acid profiles and
intermediary metabolism of blunt snout bream Megalobrama amblycephala in
an interactive pattern. Aquaculture 481: 140-153.
Wang,
S.Y., Chang, C.Y. & Chen, C.W. 2017. Effects of vinegar-egg on growth
inhibition, differentiation human leukemic U937 cells and its immunomodulatory
activity. Journal of Food and Drug Analysis 26(2): 731-740.
Xie,
W.D., Zhao, Y.N. & Du, L.J. 2012. Emerging approaches of traditional
Chinese medicine formulas for the treatment of hyperlipidemia. Journal of
Ethnopharmacology 140: 345-367.
Zhong,
F., Zhang, X., Ma, J. & Shoemaker, C.F. 2007. Fractionation and identification
of a novel hypocholesterolemic peptide derived from soy protein Alcalase
hydrolysates. Food Research International 40: 756-762.
Zhu,
Z., Lin, Z., Jiang, H., Jiang, Y., Zhao, M. & Liu, X. 2017. Hypolipidemic
effect of Youcha in hyperlipidemia rats induced by high-fat diet. Food
& Function 8: 1680-1687.
*Corresponding author; email:
zengqingmei-1@163.com
|