Sains Malaysiana 48(8)(2019): 1671–1683

http://dx.doi.org/10.17576/jsm-2019-4808-13

 

The Effect of Stichopus chloronotus Aqueous Extract on Human Osteoarthritis Articular Chondrocytes in Three-Dimensional Collagen Type I Hydrogel in vitro

(Kesan Ekstrak Akues Stichopus chloronotus pada Kondrosit Osteoartritis Artikul Manusia

dalam Kolagen Tiga Dimensi Hidrogel Jenis I secara in vitro)

MOHD HEIKAL MOHD YUNUS1,4*, AHMAD NAZRUN SHUID2, MOHD FAUZI BUSRA4, CHUA KIEN HUI1, NORZANA ABDUL GHAFAR3 & RIZAL ABD RANI5

 

1Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

3Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

4Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras Kuala Lumpur, Federal Territory, Malaysia

 

5Department of Orthopaedic, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras Kuala Lumpur, Kuala Lumpur, Federal Territory, Malaysia

 

Received: 25 September 2018/Accepted: 6 May 2019

 

ABSTRACT

Autologous chondrocyte-seeded scaffolds have proved to be one of the most promising alternative therapies for articular cartilage defects. However, the chondrocytes have specific nutritional requirements and risk of dedifferentiation during in vitro expansion. Stichopus chloronotus aqueous extract (SCAE) was investigated as a medium supplement for three-dimensional (3D) collagen type I hydrogel scaffold seeded with chondrocytes to determine whether SCAE is capable of maintaining phenotype and sustaining extracellular matrix synthesis and deposition. Human osteoarthritis articular chondrocytes were isolated from the knee joint cartilage of patients underwent total knee replacement surgery. Human osteoarthritis articular chondrocytes were encapsulated in collagen type I hydrogel and cultured in basic medium with 0, 0.1 and 0.2% of SCAE. The chondrocytes in 3D culture were evaluated by means cell morphology and proliferation, quantitative phenotypic expression of collagen type I, II, aggrecan core protein and sox-9. H&E, toluidine blue staining and sulfated glycosaminoglycan (sGAG) production were analyzed after 7 days in culture. Chondrocytes cultured in 3D with various SCAE concentration appeared with polygonal morphology maintaining their chondrocytes characteristic. SCAE supplementation promoted chondrocytes proliferation and the ability of the cells to express gene encoding collagen type I decreased, whereas their ability to express collagen type II, aggrecan core protein and sox9 increased as compared to control. The cartilaginous matrices were positively stained toluidine blue concomitant with higher sGAG accumulation in SCAE-supplemented culture medium. This study shown that SCAE may be beneficial for in vitro development of 3D chondrocytes culture for use in cartilage tissue engineering therapies.  

 

Keywords: Chondrocytes; collagen Type I; osteoarthritis; Stichopus chloronotus; three dimensional culture

 

ABSTRAK

Biobahan yang disemai kondrosit secara autologus telah terbukti menjadi salah satu terapi alternatif yang paling berkesan untuk kecacatan rawan artikul. Walau bagaimanapun, kondrosit mempunyai keperluan nutrien tertentu dan berisiko untuk mengalami nyahpembezaan semasa pengembangan in vitro. Ekstrak air Stichopus chloronotus (SCAE) telah dikaji sebagai tambahan bagi media untuk kondrosit yang disemai dalam hidrogel kolagen jenis I secara tiga dimensi (3-D) untuk menentukan sama ada SCAE mampu mengekalkan fenotip dan sintesis serta pemendapan matriks ekstrasel. Kondrosit osteoartritis manusia dipencilkan daripada rawan sendi lutut pesakit yang menjalani pembedahan penggantian lutut secara total. Kondrosit osteoartritis manusia disemai dalam hidrogel kolagen jenis I dan dikultur dalam medium asas dengan 0, 0.1 dan 0.2% SCAE. Kondrosit yang dikultur secara 3D dinilai daripada segi morfologi dan percambahan sel, ekspresi fenotip kuantitatif bagi kolagen jenis I, II, protein teras agrekan dan sox-9. Pewarnaan H&E dan toluidin biru serta penghasilan glikosaminoglikan tersulfat (sGAG) dianalisis selepas dikultur selama 7 hari. Kondrosit yang dikultur secara 3D dengan pelbagai kepekatan SCAE menunjukkan morfologi poligonal mengekalkan ciri-ciri kondrosit. Penambahan SCAE meningkatkan percambahan kondrosit dan keupayaan sel untuk mengekspresi gen pengekod kolagen jenis I menurun, sedangkan keupayaan untuk mengekspresikan gen kolagen jenis II, protein teras agrekan dan sox9 meningkat berbanding dengan kawalan. Matriks ekstrasel diwarnakan positif oleh toluidin biru, setara dengan pengumpulan sGAG yang lebih tinggi dalam media kultur dengan penambahan SCAE. Kajian ini memperlihatkan bahawa SCAE boleh memberi manfaat dalam pembentukan kultur kondrosit 3D secara in vitro untuk digunakan dalam terapi kejuruteraan tisu rawan.

 

Kata kunci: Kolagen jenis I; kondrosit; kultur tiga dimensi; osteoarthritis; Stichopus chloronotus

REFERENCES

Aigner, T., Gebhard, P.M., Schmid, E., Bau, B., Harley, V. & Poschl, E. 2003. SOX9 expression does not correlate with type II collagen expression in adult articular chondrocytes. Matrix Biol. 22(4): 363-372.

Althunibat, O.Y., Ridzwan, B.H., Taher, M., Jamaludin, M.D., Ikeda, M.A. & Zali, B.I. 2009. In vitro antioxidant and antiproliferative activities of three Malaysian sea cucumber species. Eur. J. Sci. Res. 37: 376-387.

Byers, B.A., Mauck, R.L., Chiang, I.E. & Tuan, R.S. 2008. Transient exposure to transforming growth factor beta 3 under serum free conditions enhances the biomechanical and biochemical maturation of tissue-engineered cartilage. Tissue Engineering Part A 14: 11

Callahan, L.A.S., Ganios, A.M., McBurney, D.L., Dilisio, M.F., Weiner, S.D., Horton Jr., W.E. & Becker, M.L. 2012. ECM production of primary human and bovine chondrocytes in hybrid PEG hydrogels containing Type I collagen and hyaluronic acid. Biomacromolecules 13: 1625-1631.

Chen, G., Liu, D., Tadokoro, M., Hirochika, R., Ohgushi, H., Tanaka, J. & Tateishi, T. 2004. Chondrogenic differentiation of human mesenchymal stem cells cultured in a cobweb-like biodegradable scaffold. Biochemical and Biophysical Research Communications 322: 50-55.

Choo, P.S. 2008. Population status, fisheries and trade of sea cucumbers in Asia. Population status, fisheries and trade of sea cucumbers in Asia. FAO Fisheries and Aquaculture Technical 516: 81-118.

Chowdhury, S.R., Mohd Fauzi, M.B., Lokanathan, Y., Min, H.N., Jia X.L., Ude, C.C. & Ruszymah, B.H.I. 2018. Collagen Type I: A versatile biomaterial. Adv. Exp. Med. Biol. 1077: 389-414.

Chung, C., Erickson, I.E., Mauck, R.L. & Burdick, J.A. 2008. Differential behavior of auricular and articular chondrocytes in hyaluronic acid hydrogels. Tissue Engineering Part A 14(7): 1121-1131.

Clay, N.E., Shin, K., Ozcelikkale, A., LeE, M.K., Rich, M.H., Kim, D.H., Han, B. & Kong, H. 2016. Modulation of matrix softness and interstitial flow for 3D cell culture using a cell-microenvironment-on-a-chip (C-MOC) system. ACS Biomater. Sci. Eng. 2(11): 1968-1975.

Drury, J.L. & Mooney, D.J. 2003. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 24: 4337-4351.

Fauzi, M.B., Lokanathan, Y., Aminuddin, B.S., Ruszymah, B.H.I. & Chowdhury, S.R. 2016. Ovine tendon collagen: Extraction, characterisation and fabrication of thin films for tissue engineering applications. Materials Science and Engineering C 68: 163-171.

Fredalina, B.D., Ridzwan, B.H., Abidin, A.A., Kaswandi, M.A., Zaiton, H., Zali, I., Kittakoop, P. & Jais, A.M. 1999. Fatty acid compositions in local sea cucumber, Stichopus chloronotus, for wound healing. Gen. Pharmacol. 33: 337-340.

Forbes, R., IIias, Z., Baine, M., Choo, P.S. & Wallbank, A. 1999. A taxonomic key and field guide to the sea cucumbers of Malaysia. Heriot -Watt University.

Galois, L., Hutasse, S., Cortial, D., Rousseau, C.F., Grossin, L., Ronziere, M.C., Herbage, D. & Freyria, A.M. 2006. Bovine chondrocyte behaviour in three-dimensional Type I collagen gel in terms of gel contraction, proliferation and gene expression. Biomaterials 27: 79-90.

Halbwirth, F., Niculescu-Morzsa, E., Zwickl, H., Bauer, C. & Nehrer, S. 2015. Mechanostimulation changes the catabolic phenotype of human dedifferentiated osteoarthritic chondrocytes. Knee Surg. Sports Traumatol. Arthrosc. 23(1): 104-111.

Jeyakumar, V., Halbwirt, F., Niculescu-Morzsa, E., Bauer, C., Zwickl, H., Kern, D. & Nehrer, S. 2016. Chondrogenic gene expression differences between chondrocytes from osteoarthritic and non-OA trauma joints in a 3D collagen Type I hydrogel. Cartilage 8(2): 191-198.

Kisiday, J.D., Kurz, B., Dimicco, M.A. & Grodzinsky, A.J. 2005. Evaluation of medium supplemented with insulin– transferrin–selenium for culture of primary bovine calf chondrocytes in three-dimensional hydrogel scaffolds tissue engineering. Tissue Eng. 11(1-2): 141-151.

Klein, T.J., Rizzi, S.C., Schrobback, K., Reichert, J.C., Jeon, J.E., Crawford, R.W. & Hutmacher, D.W. 2010. Long-term effects of hydrogel properties on human chondrocyte behavior. The Royal Society of Chemistry 6: 5175-5183.

Kontturi, L.S., Järvinen, E., Muhonen, V., Collin, E.C., Pandit, A.S., Kiviranta, I., Yliperttula, M. & Urtti, A. 2014. An injectable, in situ forming Type II collagen/hyaluronic acid hydrogel vehicle for chondrocyte delivery in cartilage tissue engineering. Drug Deliv. and Transl. Res. 4(2): 149-158.

Ledday, H.A., Awad, H.A. & Guilak, F. 2004. Molecular diffusion in tissue engineered cartilage constructs: Effects of scaffold material, time and culture conditions. J. Biomed. Mater. Res. 70B: 397-406.

Levett, P.A., Melchels, F.P.W., Schrobback, K., Hutmacher, D.W., Malda, J. & Klein, T.J. 2013. Chondrocyte redifferentiation and construct mechanical property development in single-component photocrosslinkable hydrogels. Journal of Biomedical Materials Research A 102(8): 2544-2553.

Mahapatra, C., Jin, G.Z. & Kim, H.W. 2016. Alginate-hyaluronic acid-collagen composite hydrogel favorable for the culture of chondrocytes and their phenotype maintenance. Tissue Eng. Regen. Med. 13(5): 538-546.

Melgarejo, R.Y., Sanchez, S.R., Garcia, C.Z., Garcia, L.J., Gutierrez, G.C., Luna, B.G., Ibarra, C. & Velasquillo, C. 2014. Biocompatibility of human auricular chondrocytes cultured onto a chitosan/polyvynil alcohol/epichlorohydrin-based hydrogel for tissue engineering application. Int. J. Morphol. 32(4): 1347- 1356.

Mohd Yunus Mohd Heikal, Shuid Ahmad Nazrun, Kien Hui Chua & Abd Ghafar Norzana. 2019. Stichopus chloronotus aqueous extract as a chondroprotective agent for human chondrocytes isolated from osteoarthitis articular cartilage in vitro. Cytotechnology 71(2): 521-537. https://doi.org/10.1007/ s10616-019-00298-2.

Nurzazlin, B.Z.N., Shamsul, B.S., Yahya, N.H.M., Ruszymah, B.H.I., Abdul Rani, R. & Chowdhury, S.R. 2018. Comparative study on cartilage tissue collected from less- and severely-affected region of osteoarthritic knee. Med. & Health 13(1): 77-87.

Park, J.S., Yang, H.N., Woo, D.G., Jeon, S.Y. & Park, K.H. 2011. Chondrogenesis of human mesenchymal stem cells in fibrin constructs evaluated in vitro and in nude mouse and rabbit defects models. Biomaterials 32: 1495-1507.

Ren, X., Wang, F., Chen, C., Gong, X., Yin, L. & Yang, L. 2016. Engineering zonal cartilage through bioprinting collagen Type II hydrogel constructs with biomimetic chondrocyte density gradient. BMC Musculoskeletal Disorders 17: 301.

Tallheden, T., Bengtsson, C., Brantsing, C., Sjogren-Jansson, E., Carlsson, L., Peterson, L., Brittberg, M. & Lindahl, A. 2005. Proliferation and differentiation potential of chondrocytes from osteoarthritic patients. Arthritis Res. Ther. 7(3): R560-R568.

Xu, X., Urban, J.P.G., Tirlapur, U., Wu, M.H., Cui, Z. & Cui, Z. 2006. Influence of perfusion on metabolism and matrix production by bovine articular chondrocytes in hydrogel scaffolds. Biotechnology and Bioengineering 93(6): 1103- 1111.

Yamaoka, H., Asato, H., Ogasawara, T., Nishizawa, S., Takahashi, T., Nakatsuka, T., Koshima, I., Nakamura, K., Kawaguchi, H., Chung, U., Takato, T. & Hoshi, K. 2005. Cartilage tissue engineering using human auricular chondrocytes embedded in different hydrogel materials. Journal of Biomedical Materials Research Part A 78(1): 1-11.

Yan, C. & Pochan, D.J. 2010. Rheological properties of peptide-based hydrogels for biomedical and other applications. Chemical Society Reviews 39(9): 3528-3540.

Zhang, L., Song, H. & Zhao, X. 2009. Optimum combination of insulin-transferrin-selenium and fetal bovine serum for culture of rabbit articular chondrocytes in three dimensional alginate scaffolds. International Journal of Cell Biology 2009: 747016.

 

*Corresponding author; email: mohdheikalyunus@yahoo.com

 

 

 

previous