Sains Malaysiana 48(8)(2019): 1671–1683
http://dx.doi.org/10.17576/jsm-2019-4808-13
The Effect of Stichopus
chloronotus Aqueous Extract on Human Osteoarthritis Articular Chondrocytes
in Three-Dimensional Collagen Type I Hydrogel in vitro
(Kesan Ekstrak Akues Stichopus
chloronotus pada Kondrosit Osteoartritis Artikul Manusia
dalam Kolagen Tiga
Dimensi Hidrogel Jenis I secara in vitro)
MOHD HEIKAL MOHD YUNUS1,4*, AHMAD NAZRUN SHUID2, MOHD FAUZI BUSRA4, CHUA KIEN HUI1, NORZANA ABDUL GHAFAR3 & RIZAL ABD RANI5
1Department of
Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob
Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
2Department of
Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob
Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
3Department of Anatomy, Universiti
Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000
Cheras, Kuala Lumpur, Federal Territory, Malaysia
4Tissue Engineering
Centre, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif,
Bandar Tun Razak, 56000 Cheras Kuala Lumpur, Federal Territory, Malaysia
5Department of
Orthopaedic, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif,
Bandar Tun Razak, 56000 Cheras Kuala Lumpur, Kuala Lumpur, Federal Territory, Malaysia
Received:
25 September 2018/Accepted: 6 May 2019
ABSTRACT
Autologous
chondrocyte-seeded scaffolds have proved to be one of the most promising
alternative therapies for articular cartilage defects. However, the
chondrocytes have specific nutritional requirements and risk of
dedifferentiation during in vitro expansion. Stichopus
chloronotus aqueous extract (SCAE) was investigated as a
medium supplement for three-dimensional (3D) collagen type I hydrogel scaffold
seeded with chondrocytes to determine whether SCAE is
capable of maintaining phenotype and sustaining extracellular matrix synthesis
and deposition. Human osteoarthritis articular chondrocytes were isolated from
the knee joint cartilage of patients underwent total knee replacement surgery.
Human osteoarthritis articular chondrocytes were encapsulated in collagen type
I hydrogel and cultured in basic medium with 0, 0.1 and 0.2% of SCAE.
The chondrocytes in 3D culture were evaluated by means cell morphology and
proliferation, quantitative phenotypic expression of collagen type I, II,
aggrecan core protein and sox-9. H&E, toluidine blue staining and sulfated
glycosaminoglycan (sGAG) production were analyzed after 7
days in culture. Chondrocytes cultured in 3D with various SCAE concentration
appeared with polygonal morphology maintaining their chondrocytes characteristic. SCAE supplementation promoted chondrocytes proliferation and the
ability of the cells to express gene encoding collagen type I decreased,
whereas their ability to express collagen type II, aggrecan core protein and
sox9 increased as compared to control. The cartilaginous matrices were
positively stained toluidine blue concomitant with higher sGAG accumulation
in SCAE-supplemented culture medium. This study shown that SCAE may be beneficial for in vitro development of 3D
chondrocytes culture for use in cartilage tissue engineering therapies.
Keywords: Chondrocytes;
collagen Type I; osteoarthritis; Stichopus chloronotus;
three dimensional culture
ABSTRAK
Biobahan yang disemai
kondrosit secara autologus telah terbukti menjadi salah satu terapi
alternatif yang paling berkesan untuk kecacatan rawan artikul. Walau
bagaimanapun, kondrosit mempunyai keperluan nutrien tertentu dan
berisiko untuk mengalami nyahpembezaan semasa pengembangan in vitro.
Ekstrak air Stichopus chloronotus (SCAE)
telah dikaji sebagai tambahan bagi media untuk kondrosit yang disemai
dalam hidrogel kolagen jenis I secara tiga dimensi (3-D) untuk menentukan
sama ada SCAE
mampu mengekalkan fenotip dan sintesis serta pemendapan
matriks ekstrasel. Kondrosit osteoartritis manusia dipencilkan daripada
rawan sendi lutut pesakit yang menjalani pembedahan penggantian
lutut secara total. Kondrosit osteoartritis manusia disemai dalam
hidrogel kolagen jenis I dan dikultur dalam medium asas dengan 0,
0.1 dan 0.2% SCAE.
Kondrosit yang dikultur secara 3D dinilai daripada segi morfologi
dan percambahan sel, ekspresi fenotip kuantitatif bagi kolagen jenis
I, II, protein teras agrekan dan sox-9. Pewarnaan H&E dan toluidin
biru serta penghasilan glikosaminoglikan tersulfat (sGAG) dianalisis selepas dikultur
selama 7 hari. Kondrosit yang dikultur secara 3D dengan pelbagai
kepekatan SCAE menunjukkan morfologi poligonal mengekalkan ciri-ciri
kondrosit. Penambahan SCAE meningkatkan percambahan
kondrosit dan keupayaan sel untuk mengekspresi gen pengekod kolagen
jenis I menurun, sedangkan keupayaan untuk mengekspresikan gen kolagen
jenis II, protein teras agrekan dan sox9 meningkat berbanding dengan
kawalan. Matriks ekstrasel diwarnakan positif oleh toluidin biru,
setara dengan pengumpulan sGAG
yang lebih tinggi dalam media kultur dengan penambahan
SCAE.
Kajian ini memperlihatkan bahawa SCAE boleh memberi manfaat dalam
pembentukan kultur kondrosit 3D secara in vitro untuk digunakan
dalam terapi kejuruteraan tisu rawan.
Kata kunci: Kolagen
jenis I; kondrosit; kultur tiga dimensi; osteoarthritis; Stichopus
chloronotus
REFERENCES
Aigner,
T., Gebhard, P.M., Schmid, E., Bau, B., Harley, V. & Poschl, E. 2003. SOX9
expression does not correlate with type II collagen expression in adult
articular chondrocytes. Matrix Biol. 22(4): 363-372.
Althunibat,
O.Y., Ridzwan, B.H., Taher, M., Jamaludin, M.D., Ikeda, M.A. & Zali, B.I.
2009. In vitro antioxidant and antiproliferative activities of three
Malaysian sea cucumber species. Eur. J. Sci. Res. 37: 376-387.
Byers, B.A.,
Mauck, R.L., Chiang, I.E. & Tuan, R.S. 2008. Transient exposure to
transforming growth factor beta 3 under serum free conditions enhances the
biomechanical and biochemical maturation of tissue-engineered cartilage. Tissue
Engineering Part A 14: 11
Callahan, L.A.S.,
Ganios, A.M., McBurney, D.L., Dilisio, M.F., Weiner, S.D., Horton Jr., W.E.
& Becker, M.L. 2012. ECM production of primary human and bovine
chondrocytes in hybrid PEG hydrogels containing Type I collagen and hyaluronic
acid. Biomacromolecules 13: 1625-1631.
Chen, G., Liu, D.,
Tadokoro, M., Hirochika, R., Ohgushi, H., Tanaka, J. & Tateishi, T. 2004.
Chondrogenic differentiation of human mesenchymal stem cells cultured in a
cobweb-like biodegradable scaffold. Biochemical and Biophysical Research
Communications 322: 50-55.
Choo, P.S. 2008.
Population status, fisheries and trade of sea cucumbers in Asia. Population
status, fisheries and trade of sea cucumbers in Asia. FAO Fisheries and
Aquaculture Technical 516: 81-118.
Chowdhury, S.R., Mohd
Fauzi, M.B., Lokanathan, Y., Min, H.N., Jia X.L., Ude, C.C. & Ruszymah,
B.H.I. 2018. Collagen Type I: A versatile biomaterial. Adv. Exp. Med. Biol. 1077:
389-414.
Chung, C., Erickson,
I.E., Mauck, R.L. & Burdick, J.A. 2008. Differential behavior of auricular
and articular chondrocytes in hyaluronic acid hydrogels. Tissue Engineering
Part A 14(7): 1121-1131.
Clay, N.E., Shin, K.,
Ozcelikkale, A., LeE, M.K., Rich, M.H., Kim, D.H., Han, B. & Kong, H. 2016.
Modulation of matrix softness and interstitial flow for 3D cell culture using a
cell-microenvironment-on-a-chip (C-MOC) system. ACS Biomater. Sci. Eng. 2(11):
1968-1975.
Drury, J.L. &
Mooney, D.J. 2003. Hydrogels for tissue engineering: Scaffold design variables
and applications. Biomaterials 24: 4337-4351.
Fauzi, M.B., Lokanathan,
Y., Aminuddin, B.S., Ruszymah, B.H.I. & Chowdhury, S.R. 2016. Ovine tendon
collagen: Extraction, characterisation and fabrication of thin films for tissue
engineering applications. Materials Science and Engineering C 68:
163-171.
Fredalina, B.D.,
Ridzwan, B.H., Abidin, A.A., Kaswandi, M.A., Zaiton, H., Zali, I., Kittakoop,
P. & Jais, A.M. 1999. Fatty acid compositions in local sea cucumber, Stichopus
chloronotus, for wound healing. Gen. Pharmacol. 33: 337-340.
Forbes, R., IIias, Z.,
Baine, M., Choo, P.S. & Wallbank, A. 1999. A taxonomic key and field guide
to the sea cucumbers of Malaysia. Heriot -Watt University.
Galois, L., Hutasse, S.,
Cortial, D., Rousseau, C.F., Grossin, L., Ronziere, M.C., Herbage, D. &
Freyria, A.M. 2006. Bovine chondrocyte behaviour in three-dimensional Type I
collagen gel in terms of gel contraction, proliferation and gene expression. Biomaterials 27: 79-90.
Halbwirth, F.,
Niculescu-Morzsa, E., Zwickl, H., Bauer, C. & Nehrer, S. 2015. Mechanostimulation
changes the catabolic phenotype of human dedifferentiated osteoarthritic
chondrocytes. Knee Surg. Sports Traumatol. Arthrosc. 23(1): 104-111.
Jeyakumar, V., Halbwirt,
F., Niculescu-Morzsa, E., Bauer, C., Zwickl, H., Kern, D. & Nehrer, S. 2016.
Chondrogenic gene expression differences between chondrocytes from
osteoarthritic and non-OA trauma joints in a 3D collagen Type I hydrogel. Cartilage 8(2): 191-198.
Kisiday, J.D., Kurz, B.,
Dimicco, M.A. & Grodzinsky, A.J. 2005. Evaluation of medium supplemented
with insulin– transferrin–selenium for culture of primary bovine calf
chondrocytes in three-dimensional hydrogel scaffolds tissue engineering. Tissue
Eng. 11(1-2): 141-151.
Klein, T.J., Rizzi,
S.C., Schrobback, K., Reichert, J.C., Jeon, J.E., Crawford, R.W. &
Hutmacher, D.W. 2010. Long-term effects of hydrogel properties on human
chondrocyte behavior. The Royal Society of Chemistry 6: 5175-5183.
Kontturi, L.S.,
Järvinen, E., Muhonen, V., Collin, E.C., Pandit, A.S., Kiviranta, I.,
Yliperttula, M. & Urtti, A. 2014. An injectable, in situ forming
Type II collagen/hyaluronic acid hydrogel vehicle for chondrocyte delivery in
cartilage tissue engineering. Drug Deliv. and Transl. Res. 4(2):
149-158.
Ledday, H.A., Awad, H.A.
& Guilak, F. 2004. Molecular diffusion in tissue engineered cartilage
constructs: Effects of scaffold material, time and culture conditions. J.
Biomed. Mater. Res. 70B: 397-406.
Levett, P.A., Melchels,
F.P.W., Schrobback, K., Hutmacher, D.W., Malda, J. & Klein, T.J. 2013.
Chondrocyte redifferentiation and construct mechanical property development in
single-component photocrosslinkable hydrogels. Journal of Biomedical
Materials Research A 102(8): 2544-2553.
Mahapatra, C., Jin, G.Z.
& Kim, H.W. 2016. Alginate-hyaluronic acid-collagen composite hydrogel
favorable for the culture of chondrocytes and their phenotype maintenance. Tissue
Eng. Regen. Med. 13(5): 538-546.
Melgarejo, R.Y.,
Sanchez, S.R., Garcia, C.Z., Garcia, L.J., Gutierrez, G.C., Luna, B.G., Ibarra,
C. & Velasquillo, C. 2014. Biocompatibility of human auricular chondrocytes
cultured onto a chitosan/polyvynil alcohol/epichlorohydrin-based hydrogel for
tissue engineering application. Int. J. Morphol. 32(4): 1347- 1356.
Mohd Yunus Mohd Heikal,
Shuid Ahmad Nazrun, Kien Hui Chua & Abd Ghafar Norzana. 2019. Stichopus
chloronotus aqueous extract as a chondroprotective agent for human
chondrocytes isolated from osteoarthitis articular cartilage in vitro.
Cytotechnology 71(2): 521-537. https://doi.org/10.1007/ s10616-019-00298-2.
Nurzazlin, B.Z.N.,
Shamsul, B.S., Yahya, N.H.M., Ruszymah, B.H.I., Abdul Rani, R. & Chowdhury,
S.R. 2018. Comparative study on cartilage tissue collected from less- and
severely-affected region of osteoarthritic knee. Med. & Health 13(1):
77-87.
Park, J.S., Yang, H.N.,
Woo, D.G., Jeon, S.Y. & Park, K.H. 2011. Chondrogenesis of human
mesenchymal stem cells in fibrin constructs evaluated in vitro and in
nude mouse and rabbit defects models. Biomaterials 32: 1495-1507.
Ren, X., Wang, F., Chen,
C., Gong, X., Yin, L. & Yang, L. 2016. Engineering zonal cartilage through
bioprinting collagen Type II hydrogel constructs with biomimetic chondrocyte
density gradient. BMC Musculoskeletal Disorders 17: 301.
Tallheden, T.,
Bengtsson, C., Brantsing, C., Sjogren-Jansson, E., Carlsson, L., Peterson, L.,
Brittberg, M. & Lindahl, A. 2005. Proliferation and differentiation
potential of chondrocytes from osteoarthritic patients. Arthritis Res. Ther.
7(3): R560-R568.
Xu, X., Urban, J.P.G., Tirlapur,
U., Wu, M.H., Cui, Z. & Cui, Z. 2006. Influence of perfusion on metabolism
and matrix production by bovine articular chondrocytes in hydrogel scaffolds. Biotechnology
and Bioengineering 93(6): 1103- 1111.
Yamaoka, H., Asato, H.,
Ogasawara, T., Nishizawa, S., Takahashi, T., Nakatsuka, T., Koshima, I.,
Nakamura, K., Kawaguchi, H., Chung, U., Takato, T. & Hoshi, K. 2005.
Cartilage tissue engineering using human auricular chondrocytes embedded in
different hydrogel materials. Journal of Biomedical Materials Research Part
A 78(1): 1-11.
Yan, C. & Pochan,
D.J. 2010. Rheological properties of peptide-based hydrogels for biomedical and
other applications. Chemical Society Reviews 39(9): 3528-3540.
Zhang, L., Song, H.
& Zhao, X. 2009. Optimum combination of insulin-transferrin-selenium and
fetal bovine serum for culture of rabbit articular chondrocytes in three
dimensional alginate scaffolds. International Journal of Cell Biology 2009:
747016.
*Corresponding
author; email: mohdheikalyunus@yahoo.com
|