Sains Malaysiana 50(7)(2021): 2017-2024
http://doi.org/10.17576/jsm-2021-5007-16
Performance of Reduced Graphene
Oxide/Iron(III) Oxide/Silica Dioxide (rGO/Fe3O4/SiO2)
as a Potential Oxygen Reduction Electrocatalyst in Fuel Cell
(Prestasi Grafin Oksida Terturun/Ferum(III) Oksida/Silika Dioksida (rGO/Fe3O4/SiO2)
yang Berpotensi sebagaiElektromangkin Penurunan Oksigen dalam Sel Bahan Api)
FARHANINI
YUSOFF1,2* & KARTHI SURESH1
1Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia
2Eastern Corridor Renewable Energy (ECRE), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia
Received:
2 June 2020/Accepted: 23 November 2020
ABSTRACT
Synthesis
of the nanocomposite comprises reduced graphene oxide, iron (III) oxide and
silica dioxide nanocomposites which were denoted as rGO/Fe3O4/SiO2.
The acquired nanocomposite was determined to be a substitute for platinum
electrode in oxygen reduction reaction (ORR) to catalyze reaction, as usage of
platinum causes disadvantages in production. The nanocomposite was analyzed
physically and electrochemically to ensure the quality of the synthesized
compound. Fourier transform-infrared spectroscopy (FTIR) shows the presences of
functional groups such as O-H hydroxyl group, C=C, C=O and existence of silica
peak in the spectra of rGO/Fe3O4/SiO2,
where the data is also supported by SEM-EDS. Raman Spectrophotometer shows the
structural change of three different graphene related materials as modification
took place and X-Ray Diffraction (XRD) analysis confirms the reduction of GO
into rGO, where the crystalline structure decreased
significantly approximately about 10 nm. This data supported with Brunauer-Emmett-Teller (BET) analysis through surface area
examination. The compound of rGO/Fe3O4/SiO2 was drop-casted onto glassy carbon electrode (GCE) for modification into rGO/Fe3O4/SiO2/GCE to
carry out electrochemical analysis where Cyclic Voltammetry (CV) shows current
response by modified electrode is greater than bare GCE while Electron
Impedance Spectroscopy (EIS) of same modified electrode affirms the sample
underwent reversible process with stable and rapid electron transfers with
minimal resistance charge transfer (RCT). The study of ORR was
carried out and observed a good electrochemical response of the nanocomposite
when purged with oxygen gas.
Keywords:
Graphene; magnetite; oxygen reduction reaction; silica dioxide
ABSTRAK
Nanokomposit disintesis dengan grafin oksida terturun, ferum (III) oksida dan silika diokisda yang dinamakan rGO/Fe3O4/SiO2 sebagai pengganti untuk elektrod platinum tindak balas penurunan oksigen (ORR) sebagai pemangkin atas sebab kekurangan semasa reaksi. Pencirian fizikal dan elektrokimia dibuat untuk memastikan kualiti nanokomposit dijamin. Spektroskopi transformasi Fourier inframerah (FTIR) menunjukkan kehadiran kumpulan berfungsi di nanokomposit rGO/Fe3O4/SiO2 seperti kumpulan hidroksi O-H, C=C, C=O dan silika.
Data ini disokong oleh analisis mikroskop pengimbasan elektron (SEM). Spektroskopi Raman menunjukkan perubahan struktur untuk komposit berkenaan grafin, manakala difraksi sinar-X (XRD) menunjukkan pengecilan struktur kristal lebih kurang 10 nm, yang disokong oleh analisis penentuan kawasan permukaan Brunauer-Emmett-Teller
(BET). Elektrod karbon berkaca (GCE) diubah suai menggunakan rGO/Fe3O4/SiO2 dengan kaedah salutan titisan bagi pencirian elektrokimia. Kitaran voltametri (CV) dan spektroskopi elektrokimia impedan (EIS) membuktikan nanokomposit melalui proses terbalik dan stabil berserta pertukaran elektron yang pantas, dengan rintangan yang minimum. Objektif utama penyelidikan, ORR dijalankan dan didapati tindak balas elektrokimia yang bagus apabila diterapkan dengan gas oksigen, yang membuktikan nanokomposit yang disintesis dengan kos rendah boleh menggantikan platinum untuk tindak balas elektrokimia.
Kata kunci: Grafin; magnetit; silika dioksida; tindak balas penurunan oksigen
REFERENCES
Alam, S., Anand, C., Logudurai, R., BalasubRamanian,
V.V., Ariga, K., Bose, A.C. & Vinu,
A. 2009. Comparative study on the magnetic properties of iron oxide
nanoparticles
loaded on mesoporous silica and carbon materials with different structure. Microporous
and Mesoporous Materials 121(1-3): 178-184.
Chen,
Y.C., Huang, X.C., Luo, Y.L., Chang, Y.C., Hsieh, Y.Z. & Hsu, H.Y. 2013.
Non-
metallic nanomaterials in cancer theranostics: A
review of silica- and carbon-based drug
delivery systems. Science and Technology of Advanced Materials 14(4):
044407.
Deng,
Y., Qi, D., Deng, C., Zhang, X. & Zhao, D. 2008. Superparamagnetic
high-magnetization microspheres with an Fe3O4@ SiO2 core and perpendicularly
aligned mesoporous SiO2 shell for removal of microcystins. Journal of the American Chemical Society 130(1): 28-29.
Gupta,
V., Sharma, N., Singh, U., Arif, M. & Singh, A.
2017. Higher oxidation level in
graphene oxide. Optik - International Journal for Light and
Electron Optics 143: 115-124.
Hassan,
M., Seifi, M. & Hekmatara,
H. 2017. Preparation and study of the electrical,
magnetic and thermal properties of Fe3O4 coated carbon
nanotubes. Chinese Journal of
Physics 55(4): 1319-1328.
Hummers,
W.S. & Offeman, R.E. 1958. Preparation of
graphitic oxide. Journal of the
American Chemical Society 80(6): 1339.
Iwan, A., Caballero-briones, F., Malinowski, M., Filapek,
M., Tazbir, I. & Guerrero-
contreras, J. 2017. Graphene oxide influence on
selected properties of polymer fuel cells based on Nafion. International Journal of Hydrogen Energy 42(22): 15359-15369.
Krishna,
R., Dias, C., Ventura, J. & Titus, E. 2016. Green and facile decoration
of Fe3O4 nanoparticles on reduced graphene oxide. Materials Today: Proceedings 3(8):
2807-2813.
Kui, L., Guixia, Z. & Xiangke, W. 2012.
A brief review of graphene-based material
synthesis and its application in environmental pollution management. Chinese
Science Bulletin 57(11):
1223-1234.
Kumar,
S., Kumar, D., Kishore, B., Ranganatha, S., Munichandraiah, N. & Venkataramanan, N.S. 2017.
Electrochemical investigations of Co3 Fe-RGO as a bifunctional
catalyst for oxygen reduction and evolution reactions in alkaline media. Applied
Surface Science 418(Part A): 79-86.
Lee,
I., Bong, J. & Shokouhimehr, M. 2015. Graphene
derivatives supported nanocatalysts
for oxygen reduction reaction. Chinese Journal of Catalysis 36(11):
1799-1810.
Lee,
J. & Kim, G. 2017. Electronic properties of a graphene/periodic porous
graphene
heterostructure. Carbon 122: 281-286.
Liu,
Y., Guan, M., Feng, L. & Deng, S. 2013. Facile and straightforward synthesis
of
superparamagnetic reduced graphene oxide-Fe3O4 hybrid
composite by a solvothermal
reaction, Nanotechnology 24(2): 025604.
Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii,
A., Sun, Z., Slesarev, A., Alemany,
L.B., Lu, W. & Tour, J.M. 2010. Improved synthesis of graphene oxide. ACS
Nano 4(8): 4806-4814.
Muhamad,
N.B. & Yusoff, F. 2018. The physical and
electrochemical characteristic of
gold nanoparticles supported pedot/graphene composite
as potential cathode material in
fuel cells. Malaysian Journal of Analytical Sciences 22(6): 921-930.
Nicholson,
R.S. 1965. Theory and application of cyclic voltammetry for measurement of
electrode reaction kinetics. Analytical Chemistry 37(11): 1351-1355.
Olcese, R.N., Bettahar, M., Petitjean, D., Malaman, B., Giovanella, F. &
Dufour, A. 2012.
Gas-phase hydrodeoxygenation of guaiacol over Fe/SiO2 catalyst. Applied
Catalysis B:
Environmental 115: 63-73.
Papiya, F., Nandy, A., Mondal, S. & Paban,
P. 2017. Co/Al2O3-rGO nanocomposite as cathode
electrocatalyst for superior oxygen reduction in microbial fuel cell
applications: The effect of nanocomposite composition. Electrochimica Acta 254: 1-13.
Rameshkumar,
P., Praveen, R. & Ramaraj, R. 2015. Electroanalysis of oxygen reduction
and formic acid oxidation using reduced graphene oxide/gold nanostructures
modified
electrode. Journal of Electroanalytical Chemistry 754: 118-124.
Schöche, S., Hong, N., Khorasaninejad, M., Ambrosio, A., Orabona,
E., Maddalena, P. &
Capasso, F. 2017. Optical properties of graphene
oxide and
reduced graphene oxide determined by spectroscopic ellipsometry. Applied
Surface
Science 421: 778-782.
Wipf,
D.O., Kristensen, E.W., Deakin, M.R. & Wightman, R.M. 1988. Fast-scan
cyclic voltammetry as a method to measure rapid heterogeneous electron-transfer
kinetics. Analytical Chemistry 60(4): 306-310.
Yang,
X., Zhang, X., Ma, Y., Huang, Y. & Chen, Y. 2009. Superparamagnetic
graphene
oxide–Fe3O4 nanoparticles hybrid for controlled targeted
drug carriers. Journals of
Materials Chemistry 86(22): 2710-2714.
Yusoff, F., Aziz, A.,
Mohamed, N. & Ghani, S.A. 2013. Synthesis and characterizations
of BSCF at different pH as future cathode materials for fuel cell. International Journal of Electrochemical
Science 8(8): 10672-10687.
Yusoff, F., Suresh, K.
& Noorashikin, M.S. 2020. Synthesis and
characterization of
reduced graphene oxide-iron oxide nanocomposite as a potential fuel cell
electrocatalyst. IOP Conference Series:
Earth and Environment Science 463:
012078.
Zhang,
S., Zeng, X.T., Xie, H. & Hing, P. 2000. A
phenomenological approach for the Id/Ig ratio and sp3 fraction of magnetron sputtered a-C films. Surface and Coatings Technology 123(2-3): 256-260.
Zhu,
K., Zhang, Y., Qiu, H., Meng, Y., Gao, Y. & Meng,
X. 2016. Hierarchical Fe3O4
microsphere/reduced graphene oxide composites as a capable anode for
lithium-ion
batteries with remarkable cycling performance. Journal of Alloys and
Compounds 675: 399-406.
*Corresponding
author; email: farhanini@umt.edu.my
|