Sains Malaysiana 50(7)(2021): 2035-2045
http://doi.org/10.17576/jsm-2021-5007-18
Understanding
the Behaviour of Wind Direction in Malaysia during Monsoon Seasons using
Replicated Functional Relationship in von Mises Distribution
(Pemahaman Tingkah Laku Arah Angin di Malaysia ketika Musim Tengkujuh menggunakan Hubungan Fungsian yang Direplikasi dalam Pengedaran von Mises)
NOR
HAFIZAH MOSLIM1, NURKHAIRANY AMYRA MOKHTAR2, YONG ZULINA
ZUBAIRI3* & ABDUL GHAPOR HUSSIN4
1Institute
of Advanced Studies, Universiti Malaya, 50603 Kuala Lumpur, Federal
Territory, Malaysia
2Faculty
of Computer and Mathematical Sciences,Universiti Teknologi MARA,
Cawangan Johor, Kampus Segamat, 85000 Segamat,
Johor Darul Takzim, Malaysia
3Centre
for Foundation Studies in Science, Universiti Malaya, 50603 Kuala Lumpur,
Federal Territory, Malaysia
4Faculty
of Defence Sciences and Technology, National Defence University of Malaysia, Kem
Sungai Besi, 57000 Kuala Lumpur, Federal Territory, Malaysia
Received: 23 June 2020/Accepted: 19 November 2020
ABSTRACT
In studies of potential wind energy, knowing
statistical distribution of wind direction provides useful information in
making predictions and gives a better understanding of the behavior of the wind
direction. Malaysia experiences two monsoon seasons per year, namely Southwest
Monsoon and Northeast Monsoon and in this paper, our interest is to investigate
whether the direction of wind data in monsoon seasons can be modelled using
replicated LFRM with von Mises distribution. The beauty of this model is that
it considers the error terms in both x and y variables. This study considers
the bivariate relationship of directional wind data where errors are present in
both. Here, we propose a replicated functional relationship model, with the von
Mises distribution to describe the relationship of the wind direction data. In
the parameter estimation, maximum likelihood method is considered with
pseudo-replicated group of the replicated form of the functional relationship.
The novelty of this approach is that assumption on the ratio of concentration
parameters is no longer deemed necessary. Also, we derive the covariance matrix
of the parameters based on Fisher Information. From the Monte Carlo simulation
study, small bias measures were obtained, suggesting the viability of the
model. Based on the simulation study, it can be concluded that the wind
direction of the two monsoons in Malaysia can be modelled using replicated
linear functional relationship model.
Keywords: Circular
data; Monte Carlo simulation; parameter estimation; von Mises distribution;
wind direction data
ABSTRAK
Dalam kajian tentang potensi tenaga angin, mengetahui pengedaran statistik arah angin memberikan maklumat yang berguna dalam membuat ramalan dan memberikan pemahaman yang lebih baik mengenai tingkah laku arah angin.
Malaysia mengalami dua musim tengkujuh setiap tahun, iaitu Monsun Barat Daya dan Monsun Timur Laut dan dalam makalah ini, minat kami adalah untuk mengkaji apakah arah data angin pada musim tengkujuh dapat dimodelkan menggunakan LFRM yang direplikasi dengan pengedaran von Mises. Keindahan model ini adalah bahawa ia menganggap istilah kesalahan dalam kedua-dua pemboleh ubah x dan y. Kajian ini mempertimbangkan hubungan bivariat data angin arah dan terdapat kesilapan pada kedua-duanya. Di sini, kami mencadangkan model hubungan fungsian yang direplikasi, dengan pengedaran von Mises untuk menggambarkan hubungan data arah angin. Dalam perkiraan parameter, kaedah kemungkinan maksimum dipertimbangkan dengan kumpulan pseudo-replikasi bentuk replikasi hubungan fungsian. Kebaruan pendekatan ini adalah bahawa anggapan mengenai nisbah parameter kepekatan tidak lagi dianggap perlu.
Juga, kami memperoleh matriks kovarians parameter berdasarkan Maklumat Fisher. Daripada kajian simulasi Monte Carlo, ukuran bias kecil diperoleh, menunjukkan keberlangsungan model. Berdasarkan kajian simulasi, dapat disimpulkan bahawa arah angin dua monsun di Malaysia dapat dimodelkan dengan menggunakan model hubungan fungsian linear yang direplikasi.
Kata kunci: Anggaran parameter; data arah angin; data berkeliling; pengedaran von Mises; simulasi Monte Carlo
REFERENCES
Albani, A. & Ibrahim, M.Z. 2013. Preliminary
development of prototype of Savonius wind turbine for
application in low wind speed in Kuala Terengganu, Malaysia. International Journal of Scientific &
Technology Research 2(3): 102-108.
Caires, S. & Wyatt, L.R. 2003. A linear functional
relationship model for circular data with an application to the assessment of
ocean wave measurement. Journal of
Agricultural, Biological and Environmental Statistics 8(2): 153-169.
Çevik, H.H., Çunkaş, M.
& Polat, K. 2019. A new multistage short-term
wind power forecast model using decomposition and artificial intelligence
methods. Physica A: Statistical Mechanics
and its Applications 534: 122177.
Chai,
T. & Draxler, R.R. 2014. Root mean square error
(RMSE) or mean absolute error (MAE). Geoscientific Model Development Discussions 7(1): 1525-1534.
Chalabi,
A., Lokman, H.M., Suffian,
I.M., Karamali, K., Karthigeyan,
V. & Masita, M. 2006. Monitoring shoreline change
using Ikonos image and aerial photographs: A case
study of Kuala Terengganu area, Malaysia. In ISPRS Commission VII Mid-Term
Symposium “Remotes Sensing: from Pixels to Processes”. Enschede, the
Netherlands. pp. 8-11.
Cumming, G. 2006.
Understanding replication: confidence intervals, p-values and what’s likely to
happen next time. In International Conference on Teaching Statistics (ICOTS-7).
Eli,
A., Shaffie, M. & Zin, W.Z.W. 2012. Preliminary study on bayesian extreme rainfall analysis: A case study of Alor Setar, Kedah, Malaysia. Sains Malaysiana 41(11): 1403-1410.
Galea,
M. & de Castro, M. 2017. Robust inference in a
linear functional model with replications using the t distribution. Journal of Multivariate Analysis 160:
134-145.
Hassan,
S.F., Hussin, A.G. & Zubairi,
Y.Z. 2009. Analysis of Malaysian wind direction data using ORIANA. Modern Applied Science 3(3): 115-119.
Hussin, A.G., Fieller, N. & Stillman, E. 2005. Pseudo-replicates in the linear
circular functional relationship model. Journal
of Applied Sciences 5(1): 138-143.
Ibrahim,
A., Juahir, H., Toriman,
M.E., Mustapha, A., Azid, A. & Isiyaka, H.A. 2015. Assessment of surface water quality
using multivariate statistical techniques in the Terengganu River Basin. Malaysian Journal of Analytical Sciences 19(2): 338-348.
Jammalamadaka, S.R. & Sengupta, A. 2001. Topics in
Circular Statistics. Singapore: World Scientific Publishing.
Kamisan, N.A.B., Hussin, A.G., Zubairi, Y.Z. & Hassan, S.F. 2011. Distribution of wind
direction recorded at maximum wind speed: A case study of Malaysian wind data
for 2005. International Journal of
Physical Sciences 6(7): 1840-1850.
Kamisan, N.A.B., Hussin, A.G.
& Zubairi, Y.Z. 2010. Finding the best circular
distribution for southwesterly monsoon wind direction
in Malaysia. Sains Malaysiana 39(3): 387-393.
Khatib,
T., Mohamed, A. & Sopian, K. 2012. Optimization
of a PV/wind micro-grid for rural housing electrification using a hybrid
iterative/genetic algorithm: Case study of Kuala Terengganu, Malaysia. Energy and Buildings 47: 321-331.
Kutil, R. 2012. Biased and unbiased estimation of the circular
mean resultant length and its variance. Statistics 46(4): 549-561.
Lee,
A. 2010. Circular data. Wiley Interdisciplinary Reviews: Computational
Statistics 2(4): 477-486.
Mardia, K.V. & Jupp, P.E.
2000. Directional Statistics. New
York: John Wiley & Sons.
Sanusi,
N., Zaharim, A., Mata, S. & Sopian,
K. 2017. A Weibull and finite mixture of the von Mises distribution for wind
analysis in Mersing, Malaysia. International Journal of Green Energy 14(12): 1057-1062.
*Corresponding
email; email: yzulina@um.edu.my
|