Sains Malaysiana 51(11)(2022): 3635-3646

http://doi.org/10.17576/jsm-2022-5111-10

 

Tomato Post-Harvest Fruit Ripening in Pakistan: Effect of Methylcyclopropene (1-MCP) in Inhibiting Ripening Gene Expression

(Pemasakan Buah Tomato Selepas Dituai di Pakistan: Kesan Metilsiklopropena (1-MCP) dalam Merencat Pengekspresan Gen Pemasakan)

 

ALEENA RAMZAN, RIDA JAVED, ALVEENA ZULFIQAR & SAMINA N SHAKEEL*

 

Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan

 

Received: 24 September 2021/Accepted: 31 July 2022

 

Abstract

Short shelf life of tomato fruits, with the unavailability of modernized handling/storage and transport practices causes ~30-40 % of yield loss which leads to great financial burden on the import of Pakistani tomatoes. There is an urgent need to adapt an easy and cost effective applicable technology for increasing the shelf life of fully ripened tomato fruits by inhibiting ethylene perception that leads to ripening and decay. This study aims to evaluate the effectiveness of ethylene perception inhibitor 1-methylcyclopropene (1-MCP) on ripening of tomatoes. Physiological and molecular parameters were recorded to analyse the inhibitory effect of 1-MCP. Green tomatoes were harvested and treated with 1-MCP for 24 h and 8 days. Results of the physiological data based on colour, weight, and firmness of the fruits showed a significant delay in the onset of ripening after 1-MCP treatment. 1-MCP is known to block ethylene receptors, therefore, we used different ethylene and ripening related genes as markers to prove that 1-MCP potentially delayed tomato fruit ripening by inhibiting the ethylene pathway that in turn downregulated the ripening signalling pathway genes. Therefore, this study provides evidence that 1-MCP can effectively be used as an alternative to reduce the post-harvest tomato yield losses in Pakistan with slight optimization on the method to suit the different varieties of local tomatoes.

 

Keywords: Delayed ripening; ethylene; 1-MCP; ripening gene

 

Abstrak

Jangka hayat buah tomato yang pendek serta ketiadaan amalan pengendalian/penyimpanan dan pengangkutan moden telah menyebabkan kehilangan ~30-40% hasil tomato yang turut mengakibatkan bebanan kewangan yang besar ke atas import tomato Pakistan. Terdapat keperluan mendesak terhadap penggunaan teknologi yang mudah dan berkesan dari segi kos untuk meningkatkan jangka hayat buah tomato masak dengan menghalang persepsi etilena yang mengawal pemasakan dan pereputan. Kajian ini bertujuan untuk menilai keberkesanan perencat persepsi etilena 1-metilsiklopropena (1-MCP) terhadap pemasakan tomato. Parameter fisiologi dan molekul direkodkan untuk menganalisis kesan perencatan 1-MCP. Tomato hijau dituai dan dirawat dengan 1-MCP selama 24 jam dan 8 hari. Hasil data fisiologi berdasarkan warna, berat dan kepejalan buah menunjukkan kelewatan yang ketara dalam permulaan pemasakan selepas rawatan 1-MCP. 1-MCP diketahui menyekat reseptor etilena, oleh itu kami menggunakan gen berkait etilena dan pemasakan sebagai penanda untuk membuktikan bahawa 1-MCP berpotensi untuk menangguhkan pemasakan buah tomato dengan merencatkan tapak jalan etilena yang seterusnya mengawal atur menurun gen untuk tapak jalan isyarat pemasakan. Oleh itu, kajian ini membuktikan bahawa 1-MCP boleh digunakan secara berkesan sebagai alternatif untuk mengurangkan kehilangan hasil tomato lepas tuai di Pakistan dengan sedikit pengoptimuman pada kaedah untuk disesuaikan dengan varieti tomato tempatan yang berbeza.

 

Kata kunci: Etilena; gen peranuman; penangguhan pemasakan; 1-MCP

 

REFERENCES

Abel, S., Nguyen, M.D., Chow, W. & Theologis, A. 1995. ASC4, a primary indoleacetic acid-responsive gene encoding 1-Aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin. Journal of Biological Chemistry 270(32): 19093-19099.

Abeles, F.B., Morgan, P.W. & Saltveit Jr., M.E. 2012. Ethylene in Plant Biology. 2nd ed. San Diego: Academic Press.

Batu, A. 2004. Determination of acceptable firmness and colour values of tomatoes. Journal of Food Engineering 61(3): 471-475.

Biswas, P., East, A., Hewett, E. & Heyes, J. 2014. Ripening delay caused by 1-MCP may increase tomato chilling sensitivity. New Zealand Journal of Crop and Horticultural Science 42(2): 145-150.

Blankenship, S.M. & Dole, J.M. 2003. 1-Methylcyclopropene: A review. Postharvest Biology and Technology 28(1): 1-25.

Blankenship, S.M. & Sisler, E.C. 1993. Response of apples to diazocyclopentadiene inhibition of ethylene binding. Postharvest Biology and Technology 3(2): 95-101.

Chang, K.N., Zhong, S., Weirauch, M.T., Hon, G., Pelizzola, M., Li, H., Huang, S.S.C., Schmitz, R.J., Urich, M.A. & Kuo, D. 2013. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. Elife 2: e00675.

Dal Cin, V., Rizzini, F.M., Botton, A. &Tonutti, P. 2006. The ethylene biosynthetic and signal transduction pathways are differently affected by 1-MCP in apple and peach fruit. Postharvest Biology and Technology 42(2): 125-133.

Distefano, M., Mauro, R.P., Page, D., Giuffrida, F., Bertin, N. & Leonardi, C. 2022. Aroma volatiles in tomato fruits: The role of genetic, preharvest and postharvest factors. Agronomy 12(2): 376.

Eriksson, E.M., Bovy, A., Manning, K., Harrison, L., Andrews, J., De Silva, J., Tucker, G.A. & Seymour, G.B. 2004. Effect of the colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiology 136(4): 4184-4197.

Fraser, P.D., Enfissi, E.M.A., Halket, J.M., Truesdale, M.R., Yu, D., Gerrish, C. & Bramley, P.M. 2007. Manipulation of phytoene levels in tomato fruit: Effects on isoprenoids, plastids, and intermediary metabolism. The Plant Cell 19(10): 3194-3211.

Frusciante, L., Carli, P., Ercolano, M., Pernice, R., Di Matteo, A., Fogliano, V. & Pellegrini, N. 2007. Antioxidant nutritional quality of tomato. Molecular Nutrition & Food Research 51: 609-617.

Fujisawa, M. & Ito, Y. 2013. The regulatory mechanism of fruit ripening revealed by analyses of direct targets of the tomato MADS-box transcription factor ripening inhibitor. Plant Signaling & Behavior 8(6): 371-386.

Gamrasni, D., Feldmesser, E., Ben-Arie, R., Raz, A., Tabatznik Asiag, A., Glikman, M., Aharoni, A. & Goldway, M. 2020. Gene expression in 1-Methylcyclopropene (1-MCP) treated tomatoes during pre-climacteric ripening suggests shared regulation of methionine biosynthesis, ethylene production and respiration. Agronomy 10(11): 1669.

Gao, Y., Zhu, N., Zhu, X., Wu, M., Jiang, C.Z., Grierson, D., Luo, Y., Shen, W., Zhong, S., Fu, D-Q. & Qu, G. 2019. Diversity and redundancy of the ripening regulatory networks revealed by the fruit encode and the new CRISPR/Cas9 CNR and NOR mutants. Horticulture Research 6(1): 39.

Giorio, G., Stigliani, A.L. & D’Ambrosio, C. 2008. Phytoene synthase genes in tomato (Solanum lycopersicum L.) - new data on the structures, the deduced amino acid sequences and the expression patterns. The FEBS Journal 275(3): 527-535.

Giovannoni, J.J. 2004. Genetic regulation of fruit development and ripening. The Plant Cell 16(suppl 1): S170-S180.

Huber, D.J., Jeong, J. & Ritenour, M. 2003. Use of 1-Methylcyclopropene (1-MCP) on tomato and avocado fruits: Potential for enhanced shelf life and quality retention. Horticultural Sciences Department, Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences. University of Florida. 

In, B.C., Strable, J., Binder, B.M., Falbel, T.G. & Patterson, S.E. 2013. Morphological and molecular characterization of ethylene binding inhibition in carnations. Postharvest Biology and Technology 86: 272-279.

Kevany, B.M., Tieman, D.M., Taylor, M.G., Cin, V.D. & Klee, H.J. 2007. Ethylene receptor degradation controls the timing of ripening in tomato fruit. The Plant Journal 51(3): 458-467.

Khokhar, K.M. 2013. Present status and prospects of tomatoes in Pakistan. Agriculture Corner-Farmers to Global Market. pp. 1-21.

Kubota, C. & Kroggel, M. 2009. Application of 1-MCP for long distance transportation of high quality tomato seedlings. V International Symposium on Seed, Transplant and Stand Establishment of Horticultural Crops 898: 279-285.

Lelievre, J-M., Tichit, L., Dao, P., Fillion, L., Nam, Y-W., Pech, J.C. & Latché, A. 1997. Effects of chilling on the expression of ethylene biosynthetic genes in Passe-Crassane pear (Pyrus communis L.) fruits. Plant Molecular Biology 33(5): 847-855.

Li, L., Li, C., Sun, J., Sheng, J., Zhou, Z., Xin, M., Yi, P., He, X., Zheng, F. &Tang, Y. 2020. The effects of 1-methylcyclopropene in the regulation of antioxidative system and softening of mango fruit during storage. Journal of Food Quality 2020: Article ID. 6090354.

Li, S., Zhu, B., Pirrello, J., Xu, C., Zhang, B., Bouzayen, M., Chen, K. &Grierson, D. 2020. Roles of RIN and ethylene in tomato fruit ripening and ripening‐associated traits. New Phytologist 226(2): 460-475.

Liu, M., Pirrello, J., Chervin, C., Roustan, J.P. & Bouzayen, M. 2015. Ethylene control of fruit ripening: Revisiting the complex network of transcriptional regulation. Plant Physiology 169(4): 2380-2390.

Manning, K., Tör, M., Poole, M., Hong, Y., Thompson, A.J., King, G.J., Giovannoni, J.J. & Seymour, G.B. 2006. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics 38(8): 948-952.

Mir, N., Canoles, M., Beaudry, R., Baldwin, E. & Mehla, C.P. 2004. Inhibiting tomato ripening with 1-methylcyclopropene. Journal of the American Society for Horticultural Science 129(1): 112-120.

Moretti, C.L., Araujo, A.L., Marouelli, W.A. & Silva, W.L.C. 2002. 1-Methylcyclopropene delays tomato fruit ripening. Horticultura Brasileira 20(4): 659-663.

Mursalat, M., Rony, A.H., Rahman, A., Islam, M. & Khan, M.S. 2013. A critical analysis of artificial fruit ripening: Scientific, legislative and socio-economic aspects. ChE Thoughts 3(1): 1-7.

Pattyn, J., Vaughan-Hirsch, J. & Van de Poel, B. 2021. The regulation of ethylene biosynthesis: A complex multilevel control circuitry. The New Phytologist 229(2): 770-782.

Rao, A.V. & Agarwal, S. 1998. Bioavailability and in vivo antioxidant properties of lycopene from tomato products and their possible role in the prevention of cancer. Nutr. Cancer 31(3): 199-203.

Rizvi, J. 2017. Tomato being imported from Iran, Afghanistan, not India. The News. September 26, 2017.

Sisler, E.C. 2006. The discovery and development of compounds counteracting ethylene at the receptor level. Biotechnology Advances 24(4): 357-367.

Sisler, E.C. & Serek, M. 1997. Inhibitors of ethylene responses in plants at the receptor level: Recent developments. Physiologia Plantarum 100(3): 577-582.

Skolik, P., Morais, C.L.M., Martin, F.L. & McAinsh, M.R. 2019. Determination of developmental and ripening stages of whole tomato fruit using portable infrared spectroscopy and Chemometrics. BMC Plant Biology 19(1): 236.

Street, I.H., Aman, S., Zubo, Y., Ramzan, A., Wang, X., Shakeel, S.N., Kieber, J.J. & Schaller, G.E. 2015. Ethylene inhibits cell proliferation of the Arabidopsis root meristem. Plant Physiology 169(1): 338-350.

Su, H. & Gubler, W.D. 2012. Effect of 1-methylcyclopropene (1-MCP) on reducing postharvest decay in tomatoes (Solanum lycopersicum L.). Postharvest Biology and Technology 64(1): 133-137.

Taye, A.M., Tilahun, S., Seo, M.H., Park, D.S. & Jeong, C.S. 2019. Effects of 1-MCP on quality and storability of cherry tomato (Solanum lycopersicum L.). Horticulturae 5(2): 29.

Valero, D., Martınez-Romero, D., Valverde, J., Guillen, F. & Serrano, M. 2003. Quality improvement and extension of shelf life by 1-methylcyclopropene in plum as affected by ripening stage at harvest. Innovative Food Science & Emerging Technologies 4(3): 339-348.

Wang, R., Lammers, M., Tikunov, Y., Bovy, A.G., Angenent, G.C. & de Maagd, R.A. 2020. The rin, nor and Cnr spontaneous mutations inhibit tomato fruit ripening in additive and epistatic manners. Plant Science 294: 110436.

Yokotani, N., Nakano, R., Imanishi, S., Nagata, M., Inaba, A. & Kubo, Y. 2009. Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated. Journal of Experimental Botany 60(12): 3433-3442.

Yoshii, H. & Imaseki, H. 1982. Regulation of auxin-induced ethylene biosynthesis. Repression of inductive formation of 1-aminocyclopropane-1-carboxylate synthase by ethylene. Plant and Cell Physiology 23(4): 639-649.

Zhang, J., Ma, Y., Dong, C., Terry, L.A., Watkins, C.B., Yu, Z. & Cheng, Z.M.M. 2020. Meta-analysis of the effects of 1-methylcyclopropene (1-MCP) treatment on climacteric fruit ripening. Horticulture Research 7(1): 208.

Zhao, T., Nakano, A. & Iwasaki, Y. 2021. Differences between ethylene emission characteristics of tomato cultivars in tomato production at plant factory. Journal of Agriculture and Food Research 5: 100181.

 

*Corresponding author; email: snq28@yahoo.com

 

 

 

previous