Sains
Malaysiana 51(11)(2022): 3715-3729
http://doi.org/10.17576/jsm-2022-5111-16
Effects
of Starter Culture and Sweetener on Biochemical Compounds and Microbial
Diversity of Kombucha Tea
(Kesan Kultur Pemula dan Pemanis
pada Sebatian Biokimia serta Kepelbagaian Mikrob Teh Kombucha)
AHMAD AZFARALARIFF1,6, BATUL VOHRA2,
SHAZRUL FAZRY1,2,3, DOUGLAS LAW5, FAREED SAIRI4 & BABUL AIRIANAH OTHMAN1,2,3,*
1Department of Food Sciences, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Tasik Chini Research Center, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Innovative Centre for Confectionery Technology (MANIS), Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
4Department of Biology Sciences and Biotechnology, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
5Faculty of Health and Life Sciences, Inti International University,
Persiaran Perdana BBN Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
6Bioresource Technology Division, School of
Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
Received: 22 March 2022/Accepted: 28 June 2022
Abstract
Kombucha tea has been claimed to
have several health benefits. Many factors influence the properties of kombucha
tea produced. This study focused on the effects of starter cultures (kombucha
liquid broth (KLB) and cellulosic pellicle (KCP)) and sweetener (white sugar
(S), honey (H) and jaggery (J)) used in the production of kombucha tea. The
results showed that all kombucha teas prepared using KLB had a lower pH and a
higher concentration of acetic acid during fermentation. The ethanol content
for samples prepared using KLB increased (0.7 ± 0.26 mg/L to 1.73 ± 0.58 mg/L)
during the fermentation period, compared to KCP which was the maximum after 72
h fermentation, and continued to decrease (2.97 ± 1.24 mg/L to 0.90 ± 0.44
mg/L). Although not too much differences in pH and ethanol content were
observed when different sweetener sources were used, they did have significant
differences in antioxidant properties and antimicrobial activity. Samples
prepared using jaggery had the lowest antioxidant activity while kombucha tea
prepared using KLB and white sugar (KLB-S) had the highest antioxidant and
antibacterial activity and was mostly colonized by Acetobacteracea and Aspergillus
fumigatus. Fermentation significantly increases the number of active
compounds present in KLB-S from 11 to 25 compounds. New compounds such as
docosanedioic acid, muramic acid and thiolactomycin were formed.
Thiolactomycin, a natural antibiotic is suggested to contribute to the high
antimicrobial activity of KLB-S. In conclusion, KLB and white sugar are better
suited in preparing kombucha tea as more benefits and consistent results were
observed.
Keywords:
Antimicrobial;
antioxidant; cellulose; kombucha; pellicle; starter cultures
Abstrak
Teh kombucha
dilaporkan mempunyai pelbagai manfaat kesihatan. Terdapat banyak faktor yang
mempengaruhi ciri-ciri teh kombucha yang dihasilkan. Kajian ini memberi tumpuan
kepada kesan penggunaan kultur pemula (air teh kombucha (KLB) dan lapisan
selulosa (KCP)) serta pemanis (gula putih (S), madu (H) dan gula palma (J))
yang berbeza dalam penghasilan teh kombucha. Hasil kajian menunjukkan bahawa
semua teh kombucha yang disediakan menggunakan KLB mempunyai pH yang lebih
rendah dan kepekatan asid asetik yang lebih tinggi sepanjang tempoh fermentasi.
Kandungan etanol untuk sampel yang disediakan menggunakan KLB juga semakin
meningkat (0.7 ± 0.26 mg/L kepada 1.73 ± 0.58 mg/L) sepanjang tempoh
fermentasi, berbanding KCP yang mempunyai kepekatan maksimum selepas 72 jam dan
terus menurun (2.97 ± 1.24 mg/L hingga 0.90 ± 0.44 mg/L). Walaupun tiada
perbezaan yang ketara pada pH dan kandungan etanol direkodkan apabila sumber
pemanis yang berbeza digunakan, keputusan analisis menunjukkan perbezaan yang
ketara dilihat pada sifat antioksidan dan aktiviti antimikrob. Sampel yang
disediakan menggunakan gula palma mempunyai aktiviti antioksida yang paling
rendah manakala teh kombucha yang disediakan menggunakan klb dan gula putih
(klb-s) mempunyai aktiviti antioksida dan antibakteria yang paling tinggi dan
dikoloni oleh acetobacteracea dan aspergillus fumigatus. fermentasi
didapati telah mengubah komposisi sebatian aktif yang terdapat dalam klb-s
daripada 11 sebatian kepada 25 sebatian. sebatian baru seperti asid dokosanedioik, asid muramik
dan tiolaktomisin telah terhasil. tiolaktomisin yang merupakan antibiotik
semula jadi dalam sampel klb-s dipercayai menjadi punca aktiviti antimikrob
yang tinggi. sebagai kesimpulan, klb dan gula putih lebih sesuai digunakan
dalam penyediaan teh kombucha kerana menghasilkan teh kombucha yang lebih
banyak faedah dan keputusan yang lebih konsisten.
Kata kunci: Antimikrob; antioksida; kombucha; kultur pemula; pelikel; selulosa
REFERENCES
Ahmed, R.F., Hikal, M.S. & Abou-Taleb, K.A. 2020.
Biological, chemical and antioxidant activities of different types Kombucha. Annals
of Agricultural Sciences 65(1): 35-41.
Al-Kalifawi, E.J. 2014. Produce
bacterial cellulose of kombucha (Khubdat Humza) from honey. Journal of
Genetic and Environmental Resources Conservation 2(1): 39-45.
Amarasinghe, H., Weerakkody, N.S.
& Waisundara, V.Y. 2018. Evaluation of physicochemical properties and
antioxidant activities of kombucha “Tea Fungus” during extended periods of
fermentation. Food Science and Nutrition 6(3): 659-665.
Arıkan, M., Mitchell, A.L.,
Finn, R.D. & Gürel, F. 2020. Microbial composition of Kombucha determined
using amplicon sequencing and shotgun metagenomics. Journal of Food Science 85(2): 455-464.
Battikh, H., Bakhrouf, A. &
Ammar, E. 2012. Antimicrobial effect of Kombucha analogues. LWT - Food
Science and Technology 47(1):
71-77.
Nummer, B.A. 2013. Kombucha brewing
under the food and drug administration model food code: Risk analysis and
processing guidance abstract. Journal of Environmental Health 76(4): 8-11.
Brown, M.S., Akopiants, K., Resceck,
D.M., McArthur, H.A.I., McCormick, E. & Reynolds, K.A. 2003. Biosynthetic
origins of the natural product, thiolactomycin: A unique and selective inhibitor
of type II dissociated fatty acid synthases. Journal of the American
Chemical Society 125(34):
10166-10167.
Cardoso, R.R., Neto, R.O., dos Santos
D’Almeida, C.T., do Nascimento, T.P., Pressete, C.G., Azevedo, L., Martino,
H.S.D., Cameron, L.C., Ferreira, M.S.L. & de Barros, F.A.R. 2020. Kombuchas
from green and black teas have different phenolic profile, which impacts their
antioxidant capacities, antibacterial and antiproliferative activities. Food
Research International 128: 108782.
Chakravorty, S., Bhattacharya, S.,
Chatzinotas, A., Chakraborty, W., Bhattacharya, D. & Gachhui, R. 2016.
Kombucha tea fermentation: Microbial and biochemical dynamics. International
Journal of Food Microbiology 220: 63-72.
Chand, K., Shahi, N.C., Lohani, U.C.
& Garg, S.K. 2011. Effect of storage conditions on keeping qualities of
jaggery. Sugar Tech 13(1):
81-85.
Chen, C. & Liu, B.Y. 2000.
Changes in major components of tea fungus metabolites during prolonged
fermentation. Journal of Applied Microbiology 89(5): 834-839.
Chu, S.C. & Chen, C. 2006. Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chemistry 98(3): 502-507.
Coton, M., Pawtowski, A., Taminiau,
B., Burgaud, G., Deniel, F., Coulloumme-Labarthe, L., Fall, A., Daube, G. &
Coton, E. 2017. Unraveling microbial ecology of industrial-scale Kombucha
fermentations by metabarcoding and culture-based methods. FEMS Microbiology
Ecology 93(5): 1-16.
da Silva, I.A.A., da Silva, T.M.S.,
Camara, C.A., Queiroz, N., Magnani, M., de Novais, J.S., Soledade, L.E.B., de
Oliveira Lima, E., de Souza, A.L. & de Souza, A.G. 2013. Phenolic profile,
antioxidant activity and palynological analysis of stingless bee honey from
Amazonas, Northern Brazil. Food Chemistry 141(4): 3552-3558.
De Filippis, F., Troise, A.D.,
Vitaglione, P. & Ercolini, D. 2018. Different temperatures select
distinctive acetic acid bacteria species and promotes organic acids production
during Kombucha tea fermentation. Food
Microbiology 73: 11-16.
De Roos, J. & De Vuyst, L. 2018.
Acetic acid bacteria in fermented foods and beverages. Current Opinion in
Biotechnology 49: 115-119.
Deghrigue, M., Chriaa, J., Battikh,
H. & Abid, K. 2013. Antiproliferative
and antimicrobial activities of kombucha tea. African Journal of Microbiology Research 7(27): 3466-3470.
Dufresne, C. & Farnworth, E.
2000. Tea, Kombucha, and health: A
review. Food Research
International 33: 409-421.
Fu, C., Yan, F., Cao, Z., Xie, F. & Lin, J. 2014. Antioxidant activities of kombucha prepared from three different substrates and changes in content of probiotics during storage. Food Science and Technology (Campinas) 34(1): 123-126.
Gramza-Michalowska, A., Kulczynski,
B., Xindi, Y. & Gumienna, M. 2016. Research on the effect of culture time
on the kombucha tea beverage’s antiradical capacity and sensory value. Acta
Scientiarum Polonorum, Technologia Alimentaria 15(4): 447-457.
Greenwalt, C.J., Steinkraus, K.H.
& Ledford, R.A. 2000. Kombucha, the fermented tea: Microbiology,
composition, and claimed health effects. Journal of Food Protection 63(7): 976-981.
Gyllang, H. & Martinson, E. 1976. Aspergillus fumigatus and Aspergillus amstelodami as causes of
gushing. Journal of the Institute of Brewing 82(3): 182-183.
Huang, F., Zheng, X., Ma, X., Jiang,
R., Zhou, W., Zhou, S., Zhang, Y., Lei, S., Wang, S., Kuang, J., Han, X., Wei,
M., You, Y., Li, M., Li, Y., Liang, D., Liu, J., Chen, T., Yan, C., Wei, R.,
Rajani, C., Shen, C., Xie, G., Bian, Z., Li, H., Zhao, A. & Jia, W. 2019.
Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of
gut microbiota and bile acid metabolism. Nature Communications 10(1): 4971.
Ivanišová, E., Meňhartová, K.,
Terentjeva, M., Harangozo, Ľ., Kántor, A. & Kačániová, M. 2020.
The evaluation of chemical, antioxidant, antimicrobial and sensory properties
of kombucha tea beverage. Journal of Food Science and Technology 57(5): 1840-1846.
Jagannadha Rao, P.V.K., Das, M. &
Das, S.K. 2010. Effect of moisture content on glass transition and sticky point
temperatures of sugarcane, palmyra-palm and date-palm jaggery granules. International
Journal of Food Science and Technology 45(1): 94-104.
Jayabalan, R., Marimuthu, S. &
Swaminathan, K. 2007. Changes in content of organic acids and tea polyphenols
during kombucha tea fermentation. Food Chemistry 102(1): 392-398.
Jayabalan, R., Subathradevi, P.,
Marimuthu, S., Sathishkumar, M. & Swaminathan, K. 2008. Changes in
free-radical scavenging ability of kombucha tea during fermentation. Food
Chemistry 109(1): 227-234.
Jin, X., Song, J. & Liu, G-Q.
2020. Bioethanol production from rice straw through an enzymatic route mediated
by enzymes developed in-house from Aspergillus
fumigatus. Energy 190:
116395.
Keshk, S.M.A.S. & Sameshima, K.
2005. Evaluation of different carbon sources for bacterial cellulose
production. African Journal of Biotechnology 4(6): 478-482.
Laavanya, D., Shirkole, S. &
Balasubramanian, P. 2021. Current challenges, applications and future
perspectives of SCOBY cellulose of Kombucha fermentation. Journal of Cleaner
Production 295: 126454.
Laureys, D., Britton, S.J. & De
Clippeleer, J. 2020. Kombucha tea fermentation: A review. Journal of the
American Society of Brewing Chemists 78(3):
165-174.
Lobo, R., Dias, F. & Shenoy, C. 2017. Kombucha for healthy living: Evaluation of antioxidant potential and bioactive compounds. International Food Research Journal 24(2): 541-546.
Ma, Y., Ling, T-J., Su, X-Q., Jiang,
B., Nian, B., Chen, L-J., Liu, M., Zhang, Z-Y., Wang, D-P., Mu, Y-Y., Jiao,
W-W., Liu, Q-T., Pan, Y-H. & Zhao, M. 2021. Integrated proteomics and
metabolomics analysis of tea leaves fermented by Aspergillus niger, Aspergillus tamarii and Aspergillus fumigatus. Food Chemistry 334: 127560.
Malbaša, R.V., Lončar, E.S.,
Vitas, J.S. & Čanadanović-Brunet, J.M. 2011. Influence of starter
cultures on the antioxidant activity of kombucha beverage. Food Chemistry 127(4): 1727-1731.
Mamlouk, D. & Gullo, M. 2013.
Acetic acid bacteria: Physiology and carbon sources oxidation. Indian
Journal of Microbiology 53(4):
377-384.
Marsh, A.J., O’Sullivan, O., Hill,
C., Ross, R.P. & Cotter, P.D. 2014. Sequence-based analysis of the
bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food
Microbiology 38: 171-178.
Nazemi, L., Hashemi, S.J., Daie
Ghazvini, R., Saeedi, M., Khodavaisy, S., Barac, A., Modiri, M., Akbari Dana,
M., Zare Shahrabadi, Z. & Rezaie, S. 2019. Investigation of cgrA and cyp51A gene alternations in Aspergillus
fumigatus strains exposed to kombucha fermented tea. Current Medical
Mycology 5(3): 36-42.
Oishi, H., Noto, T., Sasaki, H.,
Suzuki, K., Hayashi, T., Okazaki, H., Ando, K. & Sawada, M. 1982.
Thiolactomycin, a new antibiotic: I. taxonomy of the producing organism, fermentation
and biological properties. The Journal of Antibiotics 35(4): 391-395.
Quiao-Won, M.E. & Teves, F.G.
2018. Characteristics of kombucha fermentation from different substrates and
cytotoxicity of tea broth. Sustainable Food Production 4: 11-19.
Sumbhate, S.V., Nayak, S., Goupale, D., Tiwari, A. & Jadon, R.S. 2012. Colorimetric method for the estimation of ethanol in alcoholic drinks. Journal of Analytical Techniques 1(1): 1-6.
Sievers, M., Lanini, C., Weber, A.,
Schuler-Schmid, U. & Teuber, M. 1995. Microbiology and fermentation balance
in a kombucha beverage obtained from a tea fungus fermentation. Systematic
and Applied Microbiology 18(4):
590-594.
Singh, J. 2013. Manufacturing
jaggery, a product of sugarcane, as health food. Agrotechnology 01(S11): 10-12.
Soares, M.G., de Lima, M. &
Reolon Schmidt, V.C. 2021. Technological aspects of kombucha, its applications
and the symbiotic culture (SCOBY), and extraction of compounds of interest: A
literature review. Trends in Food Science and Technology 110(May 2020): 539-550.
Sreeramulu, G., Zhu, Y. & Knol,
W. 2001. Characterization of antimicrobial activity in kombucha fermentation. Acta
Biotechnologica 21(1):
49-56.
Sreeramulu, G., Zhu, Y. & Knol,
W. 2000. Kombucha fermentation and its antimicrobial activity. Journal of
Agricultural and Food Chemistry 48(6):
2589-2594.
Tu, C., Azi, F., Huang, J., Xu, X.,
Xing, G. & Dong, M. 2019. Quality and metagenomic evaluation of a novel
functional beverage produced from soy whey using water kefir grains. Lwt 113(February): 108258.
Veena, K.S., Sameena, M.T.,
Padmakumari, A.K.P., Srinivasa, G.T.K., Nishanth, K.S. & Reshma, M.V. 2018.
Development and validation of HPLC method for determination of sugars in palm
sap, palm syrup, sugarcane jaggery and palm jaggery. International Food
Research Journal 25(2):
649-654.
Villarreal-Soto, S.A., Beaufort, S.,
Bouajila, J., Souchard, J.P. & Taillandier, P. 2018. Understanding kombucha
tea fermentation: A review. Journal of Food Science 83(3): 580-588.
Vitas, J.S., Vukmanović, S.Z.,
Malbaša, R.V. & Tepić Horecki, A.N. 2019. Influence of process
temperature on ethanol content in Kombucha products obtained by fermentation of
flotated must effluent. Acta Periodica Technologica 50: 311-315.
Vohra, B., Fazry, S., Sairi, F. &
Othman, B.A. 2019a. Effects of medium variation and fermentation time towards
the pH level and ethanol content of Kombucha. AIP Conference Proceedings 2111(1998): 298-302.
Vohra, B., Fazry, S., Sairi, F. &
Othman, B.A. 2019b. Effects of medium variation and fermentation time on the
antioxidant and antimicrobial properties of Kombucha. Malaysian Journal of
Fundamental and Applied Sciences 15(2-1):
298-302.
Wang, Q., Gong, J., Chisti, Y. &
Sirisansaneeyakul, S. 2014. Bioconversion of tea polyphenols to bioactive
theabrownins by Aspergillus fumigatus. Biotechnology Letters 36(12):
2515-2522.
Watawana, M.I., Jayawardena, N.,
Ranasinghe, S.J., Waisundara, V.Y., Gunawardhana, C.B., Waisundara, V.Y.,
Ranasinghe, S.J. & Waisundara, V.Y. 2017. Evaluation of the effect of
different sweetening agents on the polyphenol contents and antioxidant and
starch hydrolase inhibitory properties of Kombucha. Journal of Food
Processing and Preservation 41(1):
e12752..
Williams, M.B. & Darwin Reese, H. 1950. Colorimetric determination of ethyl alcohol. Analytical Chemistry 22(12): 1556-1561.
*Corresponding
author; email: airianah@ukm.edu.my
|