Sains Malaysiana 52(4)(2023): 1069-1085

http://doi.org/10.17576/jsm-2023-5204-04

 

Influence of Beneficial Bacterial Inoculation on Nitrogen Concentration and Tomato Seedling Growth Under Glasshouse Conditions

(Pengaruh Inokulasi Bakteria Bermanfaat terhadap Kepekatan Nitrogen dan Pertumbuhan Anak Benih Tomato di bawah Keadaan Rumah Kaca)

 

AMAILY AKTER1, ALI TAN KEE ZUAN1*, SUSILAWATI BINTI KASIM1, ADIBAH BINTI MOHD AMIN1, ZAKRY FITRI BIN AB AZIZ2, NOOR MD RAHMATULLAH3, MD EKHLASUR RAHMAN1,4, BURAQ MUSA SADEQ1 & SAYMA SERINE CHOMPA1

 

1Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

2Faculty of Agriculture and Food Sciences, Universiti Putra Malaysia Bintulu Campus, Jalan Nyabau, 97008 Bintulu, Sarawak, Malaysia

3Department of Agricultural Statistics, Faculty of Agribusiness Management, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh

4Divisional Laboratory, Soil Resource Development Institute, Krishi Khamar Sarak, Farmgate, Dhaka-1215, Bangladesh

 

Received: 8 August 2022/Accepted: 17 February 2023

 

Abstract

Many types of soil bacteria through antagonistic activity, thrive in the rhizosphere of plants or surround the tissues of plants and encourage plant development and reduce the nematode population. Bacteria as such are commonly known as Plant Growth-Promoting Rhizobacteria (PGPR). The purpose of this research was to determine Bacillus spp. inoculations impact on tomato seedling development with varying rates of chemical nitrogen-fertilizer. To minimize the recommended quantity of N fertilizer for tomato seedling development, a small pot experiment with selected PGPB was undertaken with varying amount of N fertilizer.  Plant growth-promoting bacteria (PGPB) labeled as UPMB10 and UPMRB9 (identified as Bacillus subtilis and Bacillus tequilensis, respectively) were utilized as microbial inoculants because they showed a significant improvement in seedling growth and N concentration in tomato plant tissues in a pot culture investigation. These microbial inoculants significantly improved the development of the plants, stem length, root length, leaves number, dry weight of shoots (stem, leaves), dry weight of roots, SPAD value, N concentration in tissues, and soil bacterial population. Bacteria-treated seedlings with 50% N fertilizer significantly increased stem length (69.07%), root length (78.51%), leaves number (68.58%), shoots (92.45%, 90.39%, stem and leaves, respectively), roots (73.33%), SPAD value (50.31%), and N concentration in plant tissues (63.79%) as compared to the uninoculated control. The findings also showed that inoculation of the Bacillus spp. tomato seedlings could save up to 50 percent of the recommended rate of chemical N fertilizer without affecting tomato seedling growth. The findings of this study suggest that the amount of nitrogen fertilizer given during tomato seedling development can be reduced by half, resulting in increased soil health and reduced environmental pollution.

 

Keywords: Inoculation; N levels; plant growth-promoting bacteria; tomato

 

Abstrak

Pelbagai jenis bakteria tanah melalui aktiviti antagonis, tumbuh subur dalam rizosfera tumbuhan atau mengelilingi tisu tumbuhan dan menggalakkan perkembangan tumbuhan dan mengurangkan populasi nematod. Bakteria seperti ini biasanya dikenali sebagai Rizobakteria Penggalak Pertumbuhan Tumbuhan (PGPR). Tujuan penyelidikan ini adalah untuk menentukan impak inokulasi Bacillus spp. kepada perkembangan anak benih tomato dengan kadar baja nitrogen kimia yang berbeza-beza. Untuk meminimumkan kuantiti baja N yang disyorkan untuk pembangunan anak benih tomato, satu uji kaji pasu kecil dengan PGPB terpilih telah dijalankan dengan jumlah baja N yang berbeza-beza. Bakteria penggalak pertumbuhan tumbuhan (PGPB) yang dilabelkan sebagai UPMB10 dan UPMRB9 (masing-masing dikenal pasti sebagai Bacillus subtilis dan Bacillus tequilensis) telah digunakan sebagai inokulan mikrob kerana ia menunjukkan peningkatan yang ketara dalam pertumbuhan anak benih dan kepekatan N dalam tisu tumbuhan tomato kajian kultur pasu. Inokulan mikrob ini dengan ketara meningkatkan perkembangan tumbuhan, panjang batang, panjang akar, bilangan daun, berat kering pucuk (batang, daun), berat kering akar, nilai SPAD, kepekatan N dalam tisu dan populasi bakteria tanah. Anak benih yang dirawat dengan 50% N bakteria baja dengan ketara meningkatkan panjang batang (69.07%), panjang akar (78.51%), bilangan daun (68.58%), pucuk (masing-masing 92.45%, 90.39% untuk batang dan daun), akar (73.33%), nilai SPAD (50.31%) dan kepekatan N dalam tisu tumbuhan (63.79%) berbanding kawalan tanpa inokulasi. Hasil kajian juga menunjukkan bahawa inokulasi Bacillus spp. anak benih tomato boleh menjimatkan sehingga 50 peratus daripada kadar baja N kimia yang disyorkan tanpa menjejaskan pertumbuhan anak benih tomato. Hasil kajian ini juga mencadangkan bahawa jumlah baja nitrogen yang diberikan semasa pembangunan anak benih tomato dapat dikurangkan sebanyak separuh, menyebabkan kesihatan tanah meningkat dan pencemaran alam sekitar berkurangan.

 

Kata kunci: Bakteria penggalak pertumbuhan tumbuhan; inokulasi; tahap N; tomato

 

REFERENCES

Acebo‐Guerrero, Y., Hernández‐Rodríguez, A., Vandeputte, O., Miguélez‐Sierra, Y., Heydrich‐Pérez, M., Ye, L., Cornelis, P., Bertin, P. & El Jaziri, M. 2015. Characterization of Pseudomonas chlororaphis from Theobroma cacao L. rhizosphere with antagonistic activity against Phytophthora palmivora (Butler). Journal of Applied Microbiology 119(4): 1112-1126. doi:10.1111/ jam.12910

Adesemoye, A.O., Torbert, H.A. & Kloepper, J.W. 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology 58(4): 921-929.

Afridi, Muhammad Siddique, Amna, Sumaira, Tariq Mahmood, Abdul Salam, Tehmeena Mukhtar, Shehzad Mehmood, Javed Ali, Zobia Khatoon, Maryam Bibi, Muhammad Tariq Javed, Tariq Sultan & Hassan Javed Chaudhary. 2019. Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. Plant Physiology and Biochemistry 139: 569-577.

Ali-Tan, K.Z., Radziah, O., Halimi, M.S., Abdul Rahim, K.B., Abdullah, M. & Shamsuddin, Z.H. 2017. Growth and yield responses of rice cv. MR219 to rhizobial and plant growth-promoting rhizobacterial inoculations under different fertilizer-n rates. Bangladesh J. Bot. 46: 481-488.

Ashrafi, V. & Seiedi, M.N. 2011. Influence of different plant densities and Plant Growth Promoting Rhizobacteria (PGPR) on yield and yield attributes of corn (Zea maize L.). Recent Research in Science and Technology 3(1): 63-66.

Baset Mia, M.A., Shamsuddin, Z.H. & Maziah, M. 2012. Effects of rhizobia and plant growth promoting bacteria inoculation on germination and seedling vigor of lowland rice. African Journal of Biotechnology 11(16): 3758-3765.

Baset Mia, M.A., Shamsuddin, Z.H., Wahab, Z. & Marziah, M. 2010. Effect of plant growth promoting rhizobacterial (PGPR) inoculation on growth and nitrogen incorporation of tissue-cultured Musa plantlets under nitrogen-free hydroponics condition. Australian Journal of Crop Science 4(2): 85-90.

Bastián, F., Cohen, A., Piccoli, P., Luna, V., Baraldi, R. & Bottini, R. 1998. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regulation 24(1): 7-11.

Bhattacharyya, P.N. & Jha, D.K. 2012. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology 28(4): 1327-1350. https://doi.org/10.1007/s11274-011-0979-9 

Biswas, J.C., Ladha, J.K. & Dazzo, F.B. 2000. Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Science Society of America Journal 64(5): 1644-1650.

Borges, C.S., Saccol de Sá, E.L., Muniz, A.W. & Osorio Filho, B.D. 2019. Potential use of rhizobium for vegetable crops growth promotion. Afr. J. Agric. Res. 14(8): 477-483.

Bottini, R., Cassán, F. & Piccoli, P. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Applied Microbiology and Biotechnology 65(5): 497-503. https://doi.org/10.1007/s00253-004-1696-1

Cabra Cendales, T., Rodríguez González, C.A., Villota Cuásquer, C.P., Tapasco, O. & Hernández-Rodríguez, A. 2017. Bacillus effect on the germination and growth of tomato seedlings (Solanum lycopersicum L). Acta Biológica Colombiana 22(1): 37-44.

Calvo, P., Watts, D.B., Kloepper, J.W. & Torbert, H.A. 2017. Effect of microbial‐based inoculants on nutrient concentrations and early root morphology of corn (Zea mays). Journal of Plant Nutrition and Soil Science 180(1): 56-70.

Camelo, M., Vera, S.P. & Bonilla, R.R. 2011. Mecanismos de acción de las rizobacterias promotoras del crecimiento vegetal. Ciencia & Tecnología Agropecuaria 12(2): 159-166.

Canbolat, M.Y., Bilen, S., Çakmakçı, R., Şahin, F. & Aydın, A. 2006. Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biology and Fertility of Soils 42(4): 350-357.

Chaichi, M.R., Shabani, G. & Noori, F. 2015. Response of berseem clover (Trifolium alexandrinum L.) to chemical, biological and integrated use of fertilizers. Cercetari Agronomice in Moldova 48(1): 77-87.

Chen, J., Kang, S., Du, T., Qiu, R., Guo, P. & Chen, R. 2013. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agricultural Water Management 129: 152-162.

Dashti, N., Zhang, F., Hynes, R. & Smith, D.L. 1998. Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant and Soil 200(2): 205-213. https://doi.org/10.1023/A:1004358100856

de Bruijn, F.J. 2015. Biological nitrogen fixation. In Principles of Plant-Microbe Interactions, edited by Lugtenberg, B. Springer, Cham. pp. 215-224.

de Freitas, A.D.S., Vieira, C.L., de Rosália Santos, C.E., Stamford, N.P. & de Lyra, M.d.C.C.P. 2007. Caracterização de rizóbios isolados de Jacatupé cultivado em solo salino no Estado de Pernanbuco, Brasil. Bragantia 66: 497-504.

Dey, R., Pal, K.K., Bhatt, D.M. & Chauhan, S.M. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiological Research 159(4): 371-394.

            https://doi.org/10.1016/j.micres.2004.08.004

Elkoca, E., Kantar, F. & Sahin, F. 2007. Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. Journal of Plant Nutrition 31(1): 157-171.

Estrada, G.A., Divan Baldani, V.L., de Oliveira, D.M., Urquiaga, S. & Baldani, J.I. 2013. Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant and Soil 369(1): 115-129. doi:10.1007/s11104-012- 1550-7

FAO, Crop Description and Climate. 2004. http://www.fao.org/ag/agl/aglw/cropwater/tomato. Accessed on 24 January 2005.

Figueiredo, M.V.B., Martinez, C.R., Burity, H.A. & Chanway, C.P. 2008. Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World Journal of Microbiology and Biotechnology 24(7): 1187-1193. https://doi.org/10.1007/s11274-007-9591-4

Food and Agriculture Organization of the United Nations (FAO). 2019. Land and Water. Tomato. http://www.fao.org/land-water/databases-and-software/crop-information/tomato/en/. Accessed on 21 Mar 2019.

Gahler, S., Otto, K. & Böhm, V. 2003. Alterations of vitamin C, total phenolics, and antioxidant capacity as affected by processing tomatoes to different products. Journal of Agricultural and Food Chemistry 51(27): 7962-7968.

Gül, A., Kidoglu, F. & Tüzel, Y. 2008. Effects of nutrition and Bacillus amyloliquefaciens on tomato (Solanum lycopersicum, L.) growing in perlite. Spanish Journal of Agricultural Research 6(3): 422-429.

Heidari, M., Mousavinik, S.M. & Golpayegani, A. 2011. Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ociumum basilicum L.) under water stress. Journal of Agricultural and Biological Science 6(5): 6-11.

Hernández, M.I. & Chailloux, M. 2004. Las micorrizas arbusculares y las bacterias rizosfericas como alternativa a la nutricion mineral del tomate. Cultivos Tropicales 25(2): 5-12.

Huang, P., de-Bashan, L., Crocker, T., Kloepper, J.W. & Bashan, Y. 2017. Evidence that fresh weight measurement is imprecise for reporting the effect of plant growth-promoting (rhizo) bacteria on growth promotion of crop plants. Biology and Fertility of Soils 53(2): 199-208.

Israr, D., Mustafa, G., Khan, K.S., Shahzad, M., Ahmad, N. & Masood, S. 2016. Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation. Plant Physiology and Biochemistry 108: 304-312. https://doi.org/10.1016/j.plaphy.2016.07.023

Karlidag, H., Esitken, A., Yildirim, E., Figen Donmez, M. & Turan, M. 2010. Effects of plant growth promoting bacteria on yield, growth, leaf water content, membrane permeability, and ionic composition of strawberry under saline conditions. Journal of Plant Nutrition 34(1): 34-45. https://doi.org/10.1080/01904167.2011.531357

Kaur, G. & Reddy, M.S. 2014. Influence of P-solubilizing bacteria on crop yield and soil fertility at multilocational sites. European Journal of Soil Biology 61: 35-40. doi:10.1046/j.1351- 0754.2003.0567

Kadmiri, I.M., Chaouqui, L., Azaroual, S.E., Sijilmassi, B., Yaakoubi, K. & Wahby, I. 2018. Phosphate-solubilizing and auxin-producing rhizobacteria promote plant growth under saline conditions. Arabian Journal for Science and Engineering 43(7): 3403-3415.

Khan, A., Ali, L., Chaudhary, H.J., Hussain Munis, M.F., Bano, A. & Masood, S. 2016. Bacillus pumilus alleviates boron toxicity in tomato (Lycopersicum esculentum L.) due to enhanced antioxidant enzymatic activity. Scientia Horticulturae 200: 178-185.

Kloepper, J.W. & Beauchamp, C.J. 1992. A review of issues related to measuring colonization of plant roots by bacteria. Canadian Journal of Microbiology 38(12): 1219-1232.

Kokalis-Burelle, N., Vavrina, C.S., Reddy, M.S. & Kloepper, J.W. 2003. Amendment of muskmelon and watermelon transplant media with plant growth-promoting rhizobacteria: Effects on seedling quality, disease, and nematode resistance. HortTechnology 13(3): 476-482.

Kourosh, O., Kazem, K., Abdolamir, M. & Farhad, R. 2010. Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. African Journal of Agricultural Research 5(10): 1108-1116.

Kumar, P., Thakur, S., Dhingra, G.K., Singh, A., Pal, M.K., Harshvardhan, K., Dubey, R.C. & Maheshwari, D.K. 2018. Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatalysis and Agricultural Biotechnology 15: 264-269.

Liu, K., Garrett, C., Fadamiro, H. & Kloepper, J.W. 2016. Induction of systemic resistance in Chinese cabbage against black rot by plant growth-promoting rhizobacteria. Biological Control 99: 8-13.

Lugtenberg, B. 2016. Principles of Plant-Microbe Interactions: Microbes for Sustainable Agriculture. Springer International.

Malik, K.A., Bilal, R., Mehnaz, S., Rasul, G., Mirza, M.S. & Ali, S. 1997. Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice. Plant and Soil 194: 37-44. Dordrecht: Springer. https://doi.org/10.1023/A:1004295714181

Marschner, P., Crowley, D. & Yang, C.H. 2004. Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant and Soil 261(1): 199-208.

Masciandaro, G., Ceccanti, B. & García, C. 1994. Anaerobic digestion of straw and piggery wastewaters: II. Optimization of the process. Agrochimica 38(3): 195-203.

Masood, S., Zhao, X.Q. & Shen, R.F. 2020. Bacillus pumilus promotes the growth and nitrogen uptake of tomato plants under nitrogen fertilization. Scientia Horticulturae 272: 109581. https://doi.org/10.1016/j.scienta.2020.109581

Mayak, S., Tirosh, T. & Glick, B.R. 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Science 166(2): 525-530.  https://doi.org/10.1016/j.plaphy.2004.05.009

Mittal, P., Kamle, M., Sharma, S., Choudhary, P., Rao, D.P. & Kumar, P. 2017. Plant growth-promoting rhizobacteria (PGPR): Mechanism, role in crop improvement and sustainable agriculture. Advances in PGPR Research, edited by Singh, H.B., Sarma, B.K. & Keswani, C. CABI. pp. 386-397.

Myo, E.M., Ge, B., Ma, J., Cui, H., Liu, B., Shi, L., Jiang, M. & Zhang, K. 2019. Indole-3-acetic acid production by Streptomyces fradiae NKZ-259 and its formulation to enhance plant growth. BMC Microbiology 19(1): 1-14.

Myresiotis, C.K., Vryzas, Z. & Papadopoulou-Mourkidou, E. 2014. Enhanced root uptake of acibenzolar-S-methyl (ASM) by tomato plants inoculated with selected Bacillus plant growth-promoting rhizobacteria (PGPR). Applied Soil Ecology 77: 26-33. doi:http://doi.org/10.1016/j. apsoil.2014.01.005

Myresiotis, C.K., Vryzas, Z. & Papadopoulou-Mourkidou, E. 2012. Biodegradation of soil-applied pesticides by selected strains of plant growth-promoting rhizobacteria (PGPR) and their effects on bacterial growth. Biodegradation 23(2): 297-310.

Meng, Q., Jiang, H. & Hao, J.J. 2016. Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biological Control 98: 18-26.

Mengistie, G.Y. & Awlachew, Z.T. 2022. Evaluation of the plant growth promotion effect of Bacillus species on different varieties of tomato (Solanum lycopersicum L.) seedlings. Advances in Agriculture 2022: 1771147.

Pedraza, R.O. 2016. Acetic acid bacteria as plant growth promoters. In Acetic Acid Bacteria, Springer, Tokyo. pp. 101-120. https://doi.org/10.1007/978-4-431-55933-7_4

Ratti, N., Kumar, S., Verma, H.N. & Gautam, S.P. 2001. Improvement in bioavailability of tricalcium phosphate to Cymbopogon martinii var. motia by rhizobacteria, AMF and Azospirillum inoculation. Microbiological Research 156(2): 145-149. https://doi.org/10.1078/ 0944-5013-00095

Raymond, J., Siefert, J.L., Staples, C.R. & Blankenship, R.E. 2004. The natural history of nitrogen fixation. Molecular Biology and Evolution 21(3): 541-554. https://doi.org/10.1093/molbev/msh047

Reis, V.M., Divan Baldani, V.L. & Baldani, J.I. 2015. Isolation, identification and biochemical characterization of Azospirillum spp. and other nitrogen-fixing bacteria. In Handbook for Azospirillum. Springer, Cham. pp. 3-26.

Ruzzi, M. & Aroca, R. 2015. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae 196: 124-134.

Ryle, G.J.A. 1988. The influence of host plant energy supply on nitrogen fixation. In Physiological Limitations and the Genetic Improvement of Symbiotic Nitrogen Fixation. Dordrecht: Springer. pp. 3-10.

Subba Rao, N.S. 1999. Soil Microbiology. Science Publishers, Inc.

Sundara, B., Natarajan, V. & Hari, K. 2002. Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Research 77(1): 43-49. https://doi.org/10.1016/S0378-4290(02)00048-5

Tan, K.Z., Radziah, O., Halimi, M.S., Abdul Rahim, K.B., Abdullah, M. & Shamsuddin, Z.H. 2014. Isolation and characterization of rhizobia and plant growth-promoting rhizobacteria and their effects on growth of rice seedlings. American Journal of Agricultural and Biological Sciences 9(3): 342-360.

Tinna, D., Garg, N., Sharma, S., Pandove, G. & Chawla, N. 2020. Utilization of plant growth promoting rhizobacteria as root dipping of seedlings for improving bulb yield and curtailing mineral fertilizer use in onion under field conditions. Scientia Horticulturae 270: 109432.

Turan, M., Ekinci, M., Yildirim, E., Güneş, A., Karagöz, K., Kotan, R. & Dursun, A. 2014. Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turkish Journal of Agriculture and Forestry 38(3): 327-333. https://doi.org/10.3906/tar-1308-62

Turan, M., Gulluce, M., von Wirén, N. & Sahin, F. 2012. Yield promotion and phosphorus solubilization by plant growth–promoting rhizobacteria in extensive wheat production in Turkey. Journal of Plant Nutrition and Soil Science 175(6): 818-826. https://doi.org/10.1002/jpln. 201200054

Valverde, A., Burgos, A., Fiscella, T., Rivas, R., Velazquez, E., Rodríguez-Barrueco, C., Cervantes, E., Chamber, M. & José-Mariano, I. 2007. Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. In First International Meeting on Microbial Phosphate Solubilization. Dordrecht: Springer. pp. 43-50. https://doi.org/10.1007/ s11104-006-9057-8

Widnyana Ketut, I. & Javandira, C. 2016. Activities Pseudomonas spp. and Bacillus sp. to stimulate germination and seedling growth of tomato plants. Agriculture and Agricultural Science Procedia 9: 419-423. doi:10.1016/j.aaspro.2016.02.158

Widnyana Ketut, I. 2018. PGPR (Plant Growth Promoting Rizobacteria) benefits in spurring germination, growth and increase the yield of tomato plants. Recent Advances in Tomato Breeding and Production, edited by Nyaku, S.T. & Danquah, A. http://dx.doi.org/10.5772/intechopen.78776

Wong, W-T., Tseng, C-H., Hsu, S-H., Lur, H-S., Mo, C-W., Huang, C-N., Hsu, S-C., Lee, K-T. & Liu, C-T. 2014. Promoting effects of a single Rhodopseudomonas palustris inoculant on plant growth by Brassica rapa chinensis under low fertilizer input. Microbes and Environments 29(3): 303-313.

Woodard, H.J. & Bly, A. 2000. Maize growth and yield responses to seed‐inoculated N2‐fixing bacteria under dryland production conditions. Journal of Plant Nutrition 23(1): 55-65. https://doi.org/10.1080/01904160009381997

Wu, S., Cao, Z.H., Cao, Z., Li, G., Cheung, K.C. & Wong, M.H. 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma 125(1-2): 155-166. https://doi.org/10.1016/j.geoderma.2004.07.003

Xiang, N., Lawrence, K.S., Kloepper, J.W., Donald, P.A., McInroy, J.A. & Lawrence, G.W. 2017. Biological control of Meloidogyne incognita by spore-forming plant growth-promoting rhizobacteria on cotton. Plant Disease 101(5): 774-784.

Xiao, C.H., Tang, H., Pu, L.J., Sun, D.M., Ma, J.Z., Yu, M. & Duan, R.S. 2010. Diversity of nitrogenase (nifH) genes pool in soybean field soil after continuous and rotational cropping. Journal of Basic Microbiology 50(4): 373-379. https://doi.org/10.1002/jobm. 200900317

Yildirim, E., Karlidag, H., Turan, M., Dursun, A., & Goktepe, F. 2011. Growth, nutrient uptake, and yield promotion of broccoli by plant growth promoting rhizobacteria with manure. HortScience 46(6): 932-936. https://doi.org/10.21273/HORTSCI.46.6.932

Yildizhan, H. & Taki, M. 2018. Assessment of tomato production process by cumulative exergy consumption approach in greenhouse and open field conditions: Case study of Turkey. Energy 156: 401-408. https://doi.org/10.1016/j.energy.2018.05.117

Zahir, A.Z., Akhtar, S., Ahmad, M. & Nadeem, S.M. 2012. Comparative effectiveness of Enterobacter aerogenes and Pseudomonas fluorescens for mitigating the depressing effect of brackish water on maize. International Journal of Agriculture & Biology 14: 337-344.

Zahir, A.Z., Yasin, H.M., Naveed, M., Anjum, M.A. & Khalid, M. 2010. L-tryptophan application enhances the effectiveness of rhizobium inoculation for improving growth and yield of mungbean (Vigna radiata (L.) Wilczek). Pak. J. Bot. 42(3): 1771-1780.

     

*Corresponding author; email: tkz@upm.edu.my

 

 

 

 

previous