Sains Malaysiana 52(4)(2023):
1069-1085
http://doi.org/10.17576/jsm-2023-5204-04
Pengaruh Inokulasi
Bakteria Bermanfaat terhadap Kepekatan Nitrogen dan Pertumbuhan Anak Benih
Tomato di bawah Keadaan Rumah Kaca
AMAILY AKTER1, ALI TAN KEE ZUAN1*,
SUSILAWATI BINTI KASIM1, ADIBAH BINTI MOHD AMIN1, ZAKRY
FITRI BIN AB AZIZ2, NOOR MD RAHMATULLAH3, MD EKHLASUR RAHMAN1,4,
BURAQ MUSA SADEQ1 & SAYMA SERINE CHOMPA1
1Department of Land Management,
Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
Darul Ehsan, Malaysia
2Faculty of Agriculture and Food
Sciences, Universiti Putra Malaysia Bintulu Campus,
Jalan Nyabau, 97008 Bintulu, Sarawak,
Malaysia
3Department of Agricultural
Statistics, Faculty of Agribusiness Management, Sher-e-Bangla
Agricultural University, Dhaka-1207, Bangladesh
4Divisional Laboratory, Soil
Resource Development Institute, Krishi Khamar Sarak, Farmgate, Dhaka-1215,
Bangladesh
Received: 8 August 2022/Accepted:
17 February 2023
Abstract
Many
types of soil bacteria through antagonistic activity, thrive in the rhizosphere
of plants or surround the tissues of plants and encourage plant development and
reduce the nematode population. Bacteria as such are commonly known as Plant
Growth-Promoting Rhizobacteria (PGPR). The purpose of this research was to
determine Bacillus spp. inoculations impact on tomato seedling development with varying rates of
chemical nitrogen-fertilizer. To minimize the recommended quantity of N
fertilizer for tomato seedling development, a small pot experiment with
selected PGPB was undertaken with varying amount of N fertilizer. Plant growth-promoting bacteria (PGPB) labeled
as UPMB10 and UPMRB9 (identified as Bacillus subtilis and Bacillus
tequilensis, respectively) were utilized as microbial inoculants because
they showed a significant improvement in seedling growth and N concentration in
tomato plant tissues in a pot culture investigation. These microbial inoculants
significantly improved the development of the plants, stem length, root length,
leaves number, dry weight of shoots (stem, leaves), dry weight of roots, SPAD
value, N concentration in tissues, and soil bacterial population.
Bacteria-treated seedlings with 50% N fertilizer significantly increased stem
length (69.07%), root length (78.51%), leaves number (68.58%),
shoots (92.45%, 90.39%, stem and leaves, respectively), roots (73.33%), SPAD
value (50.31%), and N concentration in plant tissues (63.79%) as compared to
the uninoculated control. The
findings also showed that inoculation of the Bacillus spp. tomato seedlings could save up
to 50 percent of the recommended rate of chemical N fertilizer without
affecting tomato seedling growth. The findings of this study suggest that the
amount of nitrogen fertilizer given during tomato seedling development can be
reduced by half, resulting in increased soil health and reduced environmental
pollution.
Keywords:
Inoculation; N levels; plant growth-promoting bacteria; tomato
Abstrak
Pelbagai
jenis bakteria tanah melalui aktiviti antagonis, tumbuh subur dalam rizosfera
tumbuhan atau mengelilingi tisu tumbuhan dan menggalakkan perkembangan tumbuhan
dan mengurangkan populasi nematod. Bakteria seperti ini biasanya dikenali sebagai
Rizobakteria Penggalak Pertumbuhan Tumbuhan (PGPR). Tujuan
penyelidikan ini adalah untuk menentukan impak inokulasi Bacillus spp. kepada
perkembangan anak benih tomato dengan kadar baja nitrogen kimia yang
berbeza-beza. Untuk meminimumkan kuantiti baja N yang disyorkan untuk
pembangunan anak benih tomato, satu uji kaji pasu kecil dengan PGPB terpilih
telah dijalankan dengan jumlah baja N yang berbeza-beza. Bakteria
penggalak pertumbuhan tumbuhan (PGPB) yang dilabelkan sebagai UPMB10 dan UPMRB9
(masing-masing dikenal pasti sebagai Bacillus
subtilis dan Bacillus tequilensis)
telah digunakan sebagai inokulan mikrob kerana ia menunjukkan peningkatan yang
ketara dalam pertumbuhan anak benih dan kepekatan N dalam tisu tumbuhan tomato
kajian kultur pasu. Inokulan mikrob ini dengan ketara meningkatkan
perkembangan tumbuhan, panjang batang, panjang akar, bilangan daun, berat
kering pucuk (batang, daun), berat kering akar, nilai SPAD, kepekatan N dalam
tisu dan populasi bakteria tanah. Anak benih yang dirawat dengan 50% N bakteria baja dengan
ketara meningkatkan panjang batang (69.07%), panjang akar (78.51%), bilangan
daun (68.58%), pucuk (masing-masing 92.45%, 90.39% untuk batang dan daun), akar
(73.33%), nilai SPAD (50.31%) dan kepekatan N dalam tisu tumbuhan (63.79%)
berbanding kawalan tanpa inokulasi. Hasil kajian juga menunjukkan bahawa inokulasi Bacillus spp. anak benih
tomato boleh menjimatkan sehingga 50 peratus daripada kadar baja N kimia yang
disyorkan tanpa menjejaskan pertumbuhan anak benih tomato. Hasil kajian
ini juga mencadangkan bahawa jumlah baja nitrogen yang diberikan semasa
pembangunan anak benih tomato dapat dikurangkan sebanyak separuh, menyebabkan
kesihatan tanah meningkat dan pencemaran alam sekitar berkurangan.
Kata
kunci: Bakteria penggalak pertumbuhan tumbuhan; inokulasi; tahap N; tomato
REFERENCES
Acebo‐Guerrero,
Y., Hernández‐Rodríguez, A., Vandeputte, O., Miguélez‐Sierra, Y.,
Heydrich‐Pérez, M., Ye, L., Cornelis, P., Bertin, P. & El Jaziri, M.
2015. Characterization of Pseudomonas
chlororaphis from Theobroma cacao L. rhizosphere with antagonistic activity against Phytophthora palmivora (Butler). Journal of Applied
Microbiology 119(4): 1112-1126. doi:10.1111/
jam.12910
Adesemoye, A.O., Torbert, H.A. & Kloepper, J.W. 2009. Plant
growth-promoting rhizobacteria allow reduced application rates of chemical
fertilizers. Microbial Ecology 58(4): 921-929.
Afridi, Muhammad
Siddique, Amna, Sumaira, Tariq Mahmood, Abdul Salam, Tehmeena Mukhtar, Shehzad
Mehmood, Javed Ali, Zobia Khatoon, Maryam Bibi, Muhammad Tariq Javed, Tariq
Sultan & Hassan Javed Chaudhary. 2019. Induction of tolerance to salinity
in wheat genotypes by plant growth promoting endophytes: Involvement of ACC
deaminase and antioxidant enzymes. Plant Physiology and Biochemistry 139:
569-577.
Ali-Tan, K.Z., Radziah, O., Halimi, M.S., Abdul Rahim, K.B.,
Abdullah, M. & Shamsuddin, Z.H. 2017. Growth and yield responses of rice
cv. MR219 to rhizobial and plant growth-promoting rhizobacterial inoculations
under different fertilizer-n rates. Bangladesh J. Bot. 46:
481-488.
Ashrafi, V. &
Seiedi, M.N. 2011. Influence of different plant densities and Plant Growth
Promoting Rhizobacteria (PGPR) on yield and yield attributes of corn (Zea maize L.). Recent Research
in Science and Technology 3(1): 63-66.
Baset Mia, M.A., Shamsuddin, Z.H. & Maziah, M. 2012.
Effects of rhizobia and plant growth promoting bacteria inoculation on
germination and seedling vigor of lowland rice. African Journal of
Biotechnology 11(16): 3758-3765.
Baset Mia, M.A., Shamsuddin, Z.H., Wahab, Z. & Marziah,
M. 2010. Effect of plant growth promoting rhizobacterial (PGPR) inoculation on
growth and nitrogen incorporation of tissue-cultured Musa plantlets under nitrogen-free hydroponics condition. Australian
Journal of Crop Science 4(2): 85-90.
Bastián, F.,
Cohen, A., Piccoli, P., Luna, V., Baraldi, R. & Bottini, R. 1998.
Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in
chemically-defined culture media. Plant Growth Regulation 24(1):
7-11.
Bhattacharyya,
P.N. & Jha, D.K. 2012. Plant growth-promoting rhizobacteria (PGPR):
Emergence in agriculture. World Journal of Microbiology and
Biotechnology 28(4): 1327-1350. https://doi.org/10.1007/s11274-011-0979-9
Biswas, J.C.,
Ladha, J.K. & Dazzo, F.B. 2000. Rhizobia inoculation improves nutrient
uptake and growth of lowland rice. Soil Science Society of America
Journal 64(5): 1644-1650.
Borges, C.S.,
Saccol de Sá, E.L., Muniz, A.W. & Osorio Filho, B.D. 2019. Potential use of
rhizobium for vegetable crops growth promotion. Afr. J. Agric. Res. 14(8):
477-483.
Bottini, R., Cassán, F. & Piccoli, P. 2004. Gibberellin
production by bacteria and its involvement in plant growth promotion and yield
increase. Applied Microbiology and Biotechnology 65(5):
497-503. https://doi.org/10.1007/s00253-004-1696-1
Cabra Cendales,
T., Rodríguez González, C.A., Villota Cuásquer, C.P., Tapasco, O. &
Hernández-Rodríguez, A. 2017. Bacillus effect on the germination and growth of
tomato seedlings (Solanum lycopersicum L). Acta Biológica Colombiana 22(1): 37-44.
Calvo, P., Watts, D.B., Kloepper, J.W. & Torbert, H.A.
2017. Effect of microbial‐based inoculants on nutrient concentrations and
early root morphology of corn (Zea mays). Journal
of Plant Nutrition and Soil Science 180(1): 56-70.
Camelo, M., Vera,
S.P. & Bonilla, R.R. 2011. Mecanismos de acción de las rizobacterias
promotoras del crecimiento vegetal. Ciencia & Tecnología
Agropecuaria 12(2): 159-166.
Canbolat, M.Y.,
Bilen, S., Çakmakçı, R., Şahin, F. & Aydın, A. 2006. Effect
of plant growth-promoting bacteria and soil compaction on barley seedling
growth, nutrient uptake, soil properties and rhizosphere microflora. Biology
and Fertility of Soils 42(4): 350-357.
Chaichi, M.R., Shabani, G. & Noori, F. 2015. Response of
berseem clover (Trifolium alexandrinum L.) to chemical, biological and integrated use of fertilizers. Cercetari
Agronomice in Moldova 48(1): 77-87.
Chen, J., Kang,
S., Du, T., Qiu, R., Guo, P. & Chen, R. 2013. Quantitative response of
greenhouse tomato yield and quality to water deficit at different growth
stages. Agricultural Water Management 129: 152-162.
Dashti, N., Zhang,
F., Hynes, R. & Smith, D.L. 1998. Plant growth promoting rhizobacteria
accelerate nodulation and increase nitrogen fixation activity by field grown
soybean [Glycine max (L.) Merr.] under short season conditions. Plant
and Soil 200(2): 205-213. https://doi.org/10.1023/A:1004358100856
de
Bruijn, F.J. 2015. Biological nitrogen fixation. In Principles of
Plant-Microbe Interactions, edited by Lugtenberg, B. Springer, Cham. pp.
215-224.
de Freitas, A.D.S., Vieira, C.L., de Rosália Santos, C.E.,
Stamford, N.P. & de Lyra, M.d.C.C.P. 2007. Caracterização de rizóbios
isolados de Jacatupé cultivado em solo salino no Estado de Pernanbuco,
Brasil. Bragantia 66: 497-504.
Dey, R., Pal, K.K., Bhatt, D.M. & Chauhan, S.M. 2004.
Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting
rhizobacteria. Microbiological Research 159(4): 371-394.
https://doi.org/10.1016/j.micres.2004.08.004
Elkoca, E., Kantar, F. & Sahin, F. 2007. Influence of
nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant
growth, and yield of chickpea. Journal of Plant Nutrition 31(1):
157-171.
Estrada, G.A.,
Divan Baldani, V.L., de Oliveira, D.M., Urquiaga, S. & Baldani, J.I. 2013.
Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant
and Soil 369(1): 115-129.
doi:10.1007/s11104-012- 1550-7
FAO, Crop Description and Climate.
2004. http://www.fao.org/ag/agl/aglw/cropwater/tomato. Accessed on 24 January 2005.
Figueiredo, M.V.B., Martinez, C.R., Burity, H.A. &
Chanway, C.P. 2008. Plant growth-promoting rhizobacteria for improving
nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World Journal of Microbiology and
Biotechnology 24(7): 1187-1193. https://doi.org/10.1007/s11274-007-9591-4
Food and Agriculture Organization
of the United Nations (FAO). 2019. Land
and Water. Tomato. http://www.fao.org/land-water/databases-and-software/crop-information/tomato/en/. Accessed on 21 Mar 2019.
Gahler, S., Otto,
K. & Böhm, V. 2003. Alterations of vitamin C, total phenolics, and
antioxidant capacity as affected by processing tomatoes to different
products. Journal of Agricultural and Food Chemistry 51(27):
7962-7968.
Gül, A., Kidoglu,
F. & Tüzel, Y. 2008. Effects of nutrition and Bacillus amyloliquefaciens on tomato (Solanum lycopersicum, L.) growing in perlite. Spanish
Journal of Agricultural Research 6(3): 422-429.
Heidari, M.,
Mousavinik, S.M. & Golpayegani, A. 2011. Plant growth promoting
rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in
basil (Ociumum basilicum L.) under
water stress. Journal of Agricultural and Biological Science 6(5):
6-11.
Hernández, M.I.
& Chailloux, M. 2004. Las micorrizas arbusculares y las bacterias
rizosfericas como alternativa a la nutricion mineral del tomate. Cultivos
Tropicales 25(2): 5-12.
Huang, P.,
de-Bashan, L., Crocker, T., Kloepper, J.W. & Bashan, Y. 2017. Evidence that
fresh weight measurement is imprecise for reporting the effect of plant
growth-promoting (rhizo) bacteria on growth promotion of crop plants. Biology
and Fertility of Soils 53(2): 199-208.
Israr, D.,
Mustafa, G., Khan, K.S., Shahzad, M., Ahmad, N. & Masood, S. 2016.
Interactive effects of phosphorus and Pseudomonas
putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids
exudation. Plant Physiology and Biochemistry 108: 304-312. https://doi.org/10.1016/j.plaphy.2016.07.023
Karlidag, H., Esitken, A., Yildirim, E., Figen Donmez, M.
& Turan, M. 2010. Effects of plant growth promoting bacteria on yield,
growth, leaf water content, membrane permeability, and ionic composition of
strawberry under saline conditions. Journal of Plant Nutrition 34(1):
34-45. https://doi.org/10.1080/01904167.2011.531357
Kaur, G. & Reddy, M.S. 2014. Influence of P-solubilizing
bacteria on crop yield and soil fertility at multilocational sites. European
Journal of Soil Biology 61: 35-40. doi:10.1046/j.1351- 0754.2003.0567
Kadmiri, I.M., Chaouqui, L., Azaroual, S.E., Sijilmassi, B.,
Yaakoubi, K. & Wahby, I. 2018. Phosphate-solubilizing and auxin-producing
rhizobacteria promote plant growth under saline conditions. Arabian
Journal for Science and Engineering 43(7): 3403-3415.
Khan, A., Ali, L., Chaudhary, H.J., Hussain Munis, M.F.,
Bano, A. & Masood, S. 2016. Bacillus pumilus alleviates boron
toxicity in tomato (Lycopersicum esculentum L.) due to enhanced
antioxidant enzymatic activity. Scientia Horticulturae 200:
178-185.
Kloepper, J.W. & Beauchamp, C.J. 1992. A review of issues
related to measuring colonization of plant roots by bacteria. Canadian
Journal of Microbiology 38(12): 1219-1232.
Kokalis-Burelle, N., Vavrina, C.S., Reddy, M.S. &
Kloepper, J.W. 2003. Amendment of muskmelon and watermelon transplant media
with plant growth-promoting rhizobacteria: Effects on seedling quality,
disease, and nematode resistance. HortTechnology 13(3):
476-482.
Kourosh, O., Kazem, K., Abdolamir, M. & Farhad, R. 2010.
Influence of PGPR and AMF on antioxidant activity, lycopene and potassium
contents in tomato. African Journal of Agricultural Research 5(10):
1108-1116.
Kumar, P., Thakur, S., Dhingra, G.K., Singh, A., Pal, M.K., Harshvardhan, K., Dubey, R.C. & Maheshwari, D.K. 2018. Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatalysis and Agricultural Biotechnology 15:
264-269.
Liu, K., Garrett, C., Fadamiro, H. & Kloepper, J.W. 2016.
Induction of systemic resistance in Chinese cabbage against black rot by plant
growth-promoting rhizobacteria. Biological Control 99: 8-13.
Lugtenberg,
B. 2016. Principles of Plant-Microbe Interactions: Microbes for
Sustainable Agriculture. Springer International.
Malik, K.A., Bilal, R., Mehnaz, S., Rasul, G., Mirza, M.S.
& Ali, S. 1997. Association of nitrogen-fixing, plant-growth-promoting
rhizobacteria (PGPR) with kallar grass and rice. Plant and Soil 194: 37-44. Dordrecht: Springer. https://doi.org/10.1023/A:1004295714181
Marschner, P., Crowley, D. & Yang, C.H. 2004. Development
of specific rhizosphere bacterial communities in relation to plant species,
nutrition and soil type. Plant and Soil 261(1): 199-208.
Masciandaro, G., Ceccanti, B. & García, C. 1994.
Anaerobic digestion of straw and piggery wastewaters: II. Optimization of the
process. Agrochimica 38(3): 195-203.
Masood, S., Zhao, X.Q. & Shen, R.F. 2020. Bacillus
pumilus promotes the growth and nitrogen uptake of tomato plants under
nitrogen fertilization. Scientia Horticulturae 272: 109581. https://doi.org/10.1016/j.scienta.2020.109581
Mayak, S., Tirosh, T. & Glick, B.R. 2004. Plant
growth-promoting bacteria that confer resistance to water stress in tomatoes
and peppers. Plant Science 166(2): 525-530. https://doi.org/10.1016/j.plaphy.2004.05.009
Mittal, P., Kamle, M., Sharma, S., Choudhary, P., Rao, D.P.
& Kumar, P. 2017. Plant growth-promoting rhizobacteria (PGPR): Mechanism,
role in crop improvement and sustainable agriculture. Advances in PGPR
Research, edited by Singh, H.B.,
Sarma, B.K. & Keswani, C. CABI. pp. 386-397.
Myo, E.M., Ge, B., Ma, J., Cui, H., Liu, B., Shi, L., Jiang,
M. & Zhang, K. 2019. Indole-3-acetic acid production by Streptomyces
fradiae NKZ-259 and its formulation to enhance plant growth. BMC
Microbiology 19(1): 1-14.
Myresiotis, C.K., Vryzas, Z. & Papadopoulou-Mourkidou, E.
2014. Enhanced root uptake of acibenzolar-S-methyl (ASM) by tomato plants
inoculated with selected Bacillus plant growth-promoting rhizobacteria
(PGPR). Applied Soil Ecology 77: 26-33. doi:http://doi.org/10.1016/j.
apsoil.2014.01.005
Myresiotis, C.K.,
Vryzas, Z. & Papadopoulou-Mourkidou, E. 2012. Biodegradation of
soil-applied pesticides by selected strains of plant growth-promoting
rhizobacteria (PGPR) and their effects on bacterial growth. Biodegradation 23(2):
297-310.
Meng, Q., Jiang, H. & Hao, J.J. 2016. Effects of Bacillus
velezensis strain BAC03 in promoting plant growth. Biological
Control 98: 18-26.
Mengistie, G.Y. & Awlachew, Z.T. 2022. Evaluation of the
plant growth promotion effect of Bacillus species on different varieties of
tomato (Solanum lycopersicum L.) seedlings. Advances in
Agriculture 2022: 1771147.
Pedraza, R.O. 2016. Acetic acid bacteria as plant growth
promoters. In Acetic Acid Bacteria, Springer, Tokyo. pp. 101-120. https://doi.org/10.1007/978-4-431-55933-7_4
Ratti, N., Kumar, S., Verma, H.N. & Gautam, S.P. 2001.
Improvement in bioavailability of tricalcium phosphate to Cymbopogon
martinii var. motia by rhizobacteria, AMF and Azospirillum inoculation. Microbiological Research 156(2): 145-149. https://doi.org/10.1078/
0944-5013-00095
Raymond, J., Siefert, J.L., Staples, C.R. & Blankenship,
R.E. 2004. The natural history of nitrogen fixation. Molecular Biology
and Evolution 21(3): 541-554.
https://doi.org/10.1093/molbev/msh047
Reis, V.M., Divan Baldani, V.L. & Baldani, J.I. 2015.
Isolation, identification and biochemical characterization of Azospirillum spp. and other nitrogen-fixing bacteria. In Handbook for Azospirillum.
Springer, Cham. pp. 3-26.
Ruzzi, M. & Aroca, R. 2015. Plant growth-promoting
rhizobacteria act as biostimulants in horticulture. Scientia
Horticulturae 196: 124-134.
Ryle, G.J.A. 1988. The influence of host plant energy supply
on nitrogen fixation. In Physiological Limitations and the Genetic
Improvement of Symbiotic Nitrogen Fixation. Dordrecht: Springer. pp. 3-10.
Subba Rao, N.S. 1999. Soil Microbiology. Science
Publishers, Inc.
Sundara, B., Natarajan, V. & Hari, K. 2002. Influence of
phosphorus solubilizing bacteria on the changes in soil available phosphorus
and sugarcane and sugar yields. Field Crops Research 77(1):
43-49. https://doi.org/10.1016/S0378-4290(02)00048-5
Tan, K.Z., Radziah, O., Halimi, M.S., Abdul Rahim, K.B.,
Abdullah, M. & Shamsuddin, Z.H. 2014. Isolation and characterization of
rhizobia and plant growth-promoting rhizobacteria and their effects on growth
of rice seedlings. American Journal of Agricultural and Biological
Sciences 9(3): 342-360.
Tinna, D., Garg, N., Sharma, S., Pandove, G. & Chawla, N.
2020. Utilization of plant growth promoting rhizobacteria as root dipping of
seedlings for improving bulb yield and curtailing mineral fertilizer use in
onion under field conditions. Scientia Horticulturae 270:
109432.
Turan, M., Ekinci, M., Yildirim, E., Güneş, A., Karagöz,
K., Kotan, R. & Dursun, A. 2014. Plant growth-promoting rhizobacteria
improved growth, nutrient, and hormone content of cabbage (Brassica oleracea)
seedlings. Turkish Journal of Agriculture and Forestry 38(3):
327-333. https://doi.org/10.3906/tar-1308-62
Turan, M., Gulluce, M., von Wirén, N. & Sahin, F. 2012.
Yield promotion and phosphorus solubilization by plant growth–promoting
rhizobacteria in extensive wheat production in Turkey. Journal of Plant
Nutrition and Soil Science 175(6): 818-826. https://doi.org/10.1002/jpln.
201200054
Valverde, A., Burgos, A., Fiscella, T., Rivas, R., Velazquez,
E., Rodríguez-Barrueco, C., Cervantes, E., Chamber, M. & José-Mariano, I.
2007. Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2
strains on the growth and seed yield of chickpea under greenhouse and field
conditions. In First International Meeting on Microbial Phosphate
Solubilization. Dordrecht: Springer. pp. 43-50. https://doi.org/10.1007/
s11104-006-9057-8
Widnyana Ketut, I. & Javandira, C. 2016. Activities Pseudomonas spp. and Bacillus sp. to stimulate germination and seedling growth of
tomato plants. Agriculture and Agricultural Science Procedia 9:
419-423. doi:10.1016/j.aaspro.2016.02.158
Widnyana Ketut, I. 2018. PGPR (Plant Growth Promoting
Rizobacteria) benefits in spurring germination, growth and increase the yield
of tomato plants. Recent Advances in Tomato Breeding and Production,
edited by Nyaku, S.T. & Danquah, A. http://dx.doi.org/10.5772/intechopen.78776
Wong, W-T., Tseng, C-H., Hsu, S-H., Lur, H-S., Mo, C-W.,
Huang, C-N., Hsu, S-C., Lee, K-T. & Liu, C-T. 2014. Promoting effects of a
single Rhodopseudomonas palustris inoculant on plant growth by Brassica
rapa chinensis under low fertilizer input. Microbes and
Environments 29(3): 303-313.
Woodard, H.J. & Bly, A. 2000. Maize growth and yield
responses to seed‐inoculated N2‐fixing bacteria under dryland
production conditions. Journal of Plant Nutrition 23(1): 55-65. https://doi.org/10.1080/01904160009381997
Wu, S., Cao, Z.H., Cao, Z., Li, G., Cheung, K.C. & Wong,
M.H. 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers
and AM fungi on maize growth: A greenhouse trial. Geoderma 125(1-2):
155-166. https://doi.org/10.1016/j.geoderma.2004.07.003
Xiang, N., Lawrence, K.S., Kloepper, J.W., Donald, P.A.,
McInroy, J.A. & Lawrence, G.W. 2017. Biological control of Meloidogyne
incognita by spore-forming plant growth-promoting rhizobacteria on
cotton. Plant Disease 101(5): 774-784.
Xiao, C.H., Tang, H., Pu, L.J., Sun, D.M., Ma, J.Z., Yu, M.
& Duan, R.S. 2010. Diversity of nitrogenase (nifH) genes pool in soybean
field soil after continuous and rotational cropping. Journal of Basic
Microbiology 50(4): 373-379. https://doi.org/10.1002/jobm. 200900317
Yildirim, E., Karlidag, H., Turan, M., Dursun, A., &
Goktepe, F. 2011. Growth, nutrient uptake, and yield promotion of broccoli by
plant growth promoting rhizobacteria with manure. HortScience 46(6):
932-936. https://doi.org/10.21273/HORTSCI.46.6.932
Yildizhan, H. & Taki, M. 2018. Assessment of tomato
production process by cumulative exergy consumption approach in greenhouse and
open field conditions: Case study of Turkey. Energy 156:
401-408. https://doi.org/10.1016/j.energy.2018.05.117
Zahir, A.Z., Akhtar, S., Ahmad, M. & Nadeem, S.M. 2012.
Comparative effectiveness of Enterobacter aerogenes and Pseudomonas
fluorescens for mitigating the depressing effect of brackish water on
maize. International Journal of Agriculture & Biology 14:
337-344.
Zahir, A.Z., Yasin, H.M., Naveed, M., Anjum, M.A. & Khalid,
M. 2010. L-tryptophan application enhances the effectiveness of rhizobium
inoculation for improving growth and yield of mungbean (Vigna radiata (L.) Wilczek). Pak. J. Bot. 42(3): 1771-1780.
*Corresponding author; email: tkz@upm.edu.my
|