Sains Malaysiana 52(4)(2023):
1087-1099
http://doi.org/10.17576/jsm-2023-5204-05
Anaerobic Biological Treatment of
Wastewater from Paper Recycling Industry by UASB Reactor
(Rawatan Biologi Anaerobik Air Sisa
daripada Industri Kitar Semula Kertas oleh Reaktor UASB)
AAIMA
IFTIKHAR1, MALIK TAHIR HAYAT1, BIBI SAIMA ZEB1,
MARIA SIDDIQUE1, ZULFIQAR AHMED BHATTI1, UMARA ABBASI1 & QAISAR MAHMOOD1,2,*
1Department
of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus,
Abbottabad 22060, Pakistan
2Department
of Biology, College of Science, University of Bahrain, Sakhir 32038, Bahrain
Received:
4 October 2022/Accepted: 25 March 2023
Abstract
The
use of an upflow anaerobic sludge blanket (UASB) reactor for the treatment of
paper recycling industry effluent containing different pollutants was
investigated. In the first phase, reactor was fed with anaerobic sludge and in
the second phase, synthetic influent solution with different macro-nutrients
and micro-nutrients, trace elements as well as glucose were added as a basis of
food and energy. In order to enhance sludge granulation and increase the
growth, anaerobic bacterial biomass culture was added and operated for one
month. Samples from paper recycling industry effluent with different dilutions
were analyzed at a hydraulic retention time (HRT) of 24 h and at 37 °C
mesophilic temperature. The removal efficiencies of chemical oxygen demand
(COD), biological oxygen demand (BOD), electrical conductivity (EC), total
dissolved solids (TDS), total suspended solids (TSS), total solids (TS),
nitrates, phosphates, heavy metals (Hg, Pb, Cd, Cr, Cu) and pH were upto 87%,
93%, 77%, 79%, 88%, 82%, 92%, 94%, 86%, 91%, 93%, 98%, 98%, and 7.21 with
different of wastewater concentration/percent dilutions 1:9, 2:8, 3:7, 4:6,
5:5, 6:4, 7:3, 8:2, 9:1, 10:0 wastewater. This study concluded that UASB
technique was a suitable choice for treating different pollutants in paper
recycling industry wastewater.
Keywords:
Paper recycling industry wastewater; substrate utilization rate; upflow
anaerobic sludge blanket (UASB) reactor; wastewater treatment
Abstrak
Penggunaan
reaktor enapcemar anaerobik aliran atas (UASB) untuk rawatan efluen industri
kitar semula kertas yang mengandungi bahan pencemar berbeza telah dikaji. Pada
fasa pertama, reaktor telah disuap dengan enapcemar anaerobik dan pada fasa
kedua, larutan influen sintetik dengan nutrien makro dan mikro-nutrien yang
berbeza, unsur surih serta glukosa ditambah sebagai asas makanan dan tenaga.
Untuk meningkatkan granulasi enap cemar dan meningkatkan pertumbuhan, kultur
biojisim bakteria anaerobik telah ditambah dan dikendalikan selama satu bulan.
Sampel daripada efluen industri kitar semula kertas dengan pencairan berbeza
dianalisis pada masa pengekalan hidraulik (HRT) selama 24 jam dan pada suhu
mesofilik 37 °C. Kecekapan penyingkiran permintaaan oksigen kimia (COD),
permintaan oksigen biologi (BOD), kekonduksian elektrik (EC), jumlah pepejal
terlarut (TDS), jumlah pepejal terampai (TSS), jumlah pepejal (TS), nitrat,
fosfat, logam berat (Hg, Pb, Cd, Cr, Cu) dan pH adalah sehingga 87%, 93%, 77%,
79%, 88%, 82%, 92%, 94%, 86%, 91%, 93%, 98%, 98% dan 7.21 dengan kepekatan air
sisa/peratus pencairan 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1, 10:0 air
sisa. Kajian ini merumuskan bahawa teknik UASB adalah pilihan yang sesuai untuk
merawat bahan pencemar yang berbeza dalam air sisa industri kitar semula
kertas.
Kata
kunci: Air sisa industri kitar semula kertas; kadar penggunaan substrat;
rawatan air sisa; reaktor enapcemar anaerobik aliran atas (UASB)
REFERENCES
Apha,
A. 2007. WEF (2005) Standard Methods for the Examination of Water and
Wastewater. Washington: National Government Publication. https://www. worldcat. org
Ashrafi, O., Yerushalmi, L. &
Haghighat, F. 2015. Wastewater treatment in the pulp-and-paper industry: A
review of treatment processes and the associated greenhouse gas emission. Journal
of Environmental Management 158: 146-157.
Ashrafi, O., Yerushalmi, L. &
Haghighat, F. 2013. Greenhouse gas emission by wastewater treatment plants of
the pulp and paper industry - Modeling and simulation. International Journal
of Greenhouse Gas Control 17: 462-472.
Bakraoui, M., El Gnaoui, Y.,
Lahboubi, N., Karouach, F. & El Bari, H. 2020. Kinetic study and
experimental productions of methane production from UASB reactor treating
wastewater from recycled pulp and paper for the continuous test. Biomass and
Bioenergy 139: 105604.
Bhatti, Z., Maqbool, F., Malik, A.
& Mehmood, Q. 2014. UASB reactor startup for the treatment of municipal
wastewater followed by advanced oxidation process. Brazilian Journal of
Chemical Engineering 31: 715-726.
Buzzini, A.P. & Pires, E.C.
2007. Evaluation of a upflow anaerobic sludge blanket reactor with partial
recirculation of effluent used to treat wastewaters from pulp and paper plants. Bioresource Technology 98: 1838-1848.
Cai, F., Lei, L. & Li, Y. 2019.
Different bioreactors for treating secondary effluent from recycled paper mill. Science of The Total Environment 667: 49-56.
Chatterjee, B. & Mazumder, D.
2019. Role of stage-separation in the ubiquitous development of anaerobic
digestion of organic fraction of municipal solid waste: A critical review. Renewable
and Sustainable Energy Reviews 104: 439-469.
De la Varga, D., Díaz, M., Ruiz, I.
& Soto, M. 2013. Heavy metal removal in an UASB-CW system treating
municipal wastewater. Chemosphere 93: 1317-1323.
Fang, H., Chui, H. & Li, Y.
1994. Microbial structure and activity of UASB granules treating different
wastewaters. Water Science & Technology 30: 87-96.
Ginni, G., Adishkumar, S., Rajesh
Banu, J. & Yogalakshmi, N. 2014. Treatment of pulp and paper mill
wastewater by solar photo-Fenton process. Desalination and Water Treatment 52: 2457-2464.
Gotmare, M., Dhoble, R. &
Pittule, A. 2011. Biomethanation of dairy waste water through UASB at
mesophilic temperature range. Int. J. Adv. Eng. Sci. Technol. 8: 1-9.
Gupta, S.K., Singh, B., Mungray,
A.K., Bharti, R., Nema, A.K., Pant, K. & Mulla, S.I. 2022.
Bioelectrochemical technologies for removal of xenobiotics from wastewater. Sustainable
Energy Technologies and Assessments 49: 101652.
Iftikhar, A., Khan, M.S., Rashid,
U., Mahmood, Q., Zafar, H., Bilal, M. & Riaz, N. 2020. Influence of
metallic species for efficient photocatalytic water disinfection: Bactericidal
mechanism of in vitro results using docking simulation. Environmental
Science and Pollution Research 27: 39819-39831.
Kamali, M. & Khodaparast, Z.
2015. Review on recent developments on pulp and paper mill wastewater
treatment. Ecotoxicology and Environmental Safety 114: 326-342.
Kim, Y., Han, K. & Lee, W.
2003. Removal of organics and calcium hardness in liner paper wastewater using
UASB and CO2 stripping system. Process Biochemistry 38:
925-931.
Krishna, K.V., Sarkar, O. &
Mohan, S.V. 2014. Bioelectrochemical treatment of paper and pulp wastewater in
comparison with anaerobic process: Integrating chemical coagulation with
simultaneous power production. Bioresource Technology 174: 142-151.
Ma, B., Peng, Y., Zhang, S., Wang,
J., Gan, Y., Chang, J., Wang, S., Wang, S. & Zhu, G. 2013. Performance of
anammox UASB reactor treating low strength wastewater under moderate and low
temperatures. Bioresource Technology 129: 606-611.
Mahmood, Q., Ping, Z., Cai, J., Wu, D., Hu, B. & Li, J. 2007. Anoxic sulfide biooxidation using nitrite as electron
acceptor. Journal
of Hazardous Materials 147(1-2): 249-256.
Metcalf, L., Eddy, H.P. &
Tchobanoglous, G. 1991. Wastewater Engineering: Treatment, Disposal, and
Reuse. New York: McGraw-Hill.
Meyer, T. & Edwards, E.A. 2014.
Anaerobic digestion of pulp and paper mill wastewater and sludge. Water
Research 65: 321-349.
Mullen, M., Wolf, D., Ferris, F.,
Beveridge, T., Flemming, C. & Bailey, G. 1989. Bacterial sorption of heavy
metals. Applied and Environmental Microbiology 55: 3143-3149.
Patel, A., Arora, N., Pruthi, V.
& Pruthi, P.A. 2017. Biological treatment of pulp and paper industry
effluent by oleaginous yeast integrated with production of biodiesel as
sustainable transportation fuel. Journal of Cleaner Production 142:
2858-2864.
Pererva, Y., Miller, C.D. &
Sims, R.C. 2020. Approaches in design of laboratory-scale UASB reactors. Processes 8: 734.
Rosa, A., Chernicharo, C., Lobato,
L., Silva, R., Padilha, R. & Borges, J. 2018. Assessing the potential of
renewable energy sources (biogas and sludge) in a full-scale UASB-based
treatment plant. Renewable Energy 124: 21-26.
Tawfik, A., Bakr, M.H., Nasr, M.,
Haider, J., Lim, H., Qyyum, M.A. & Lam, S.S. 2022. Economic and
environmental sustainability for anaerobic biological treatment of wastewater
from paper and cardboard manufacturing industry. Chemosphere 289:
133166.
Van Lier, J., Van der Zee, F.,
Frijters, C. & Ersahin, M. 2015. Celebrating 40 years anaerobic sludge bed
reactors for industrial wastewater treatment. Reviews in Environmental
Science and Bio/Technology 14: 681-702.
Yeoman, S., Stephenson, T., Lester,
J. & Perry, R. 1988. The removal of phosphorus during wastewater treatment:
A review. Environmental Pollution 49: 183-233.
Zeng, T.T., Rene, E.R., Zhang, S.Q.
& Lens, P.N.L. 2019. Removal of selenate and cadmium by anaerobic granular
sludge: EPS characterization and microbial community analysis. Process Safety and Environmental Protection 126: 150-159.
Zwain, H.M., Aziz, H.A. &
Dahlan, I. 2016. Effect of inoculum source and effluent recycle on the start-up
performance of a modified anaerobic inclining-baffled reactor treating recycled
paper mill effluent. Desalination and Water Treatment 57: 21350-21363.
Zwain, H.M., Hassan, S.R., Zaman,
N.Q., Aziz, H.A. & Dahlan, I. 2013. The start-up performance of modified
anaerobic baffled reactor (MABR) for the treatment of recycled paper mill
wastewater. Journal of Environmental Chemical Engineering 1: 61-64.
*Corresponding author; email: mahmoodzju@gmail.com
|