Sains Malaysiana 52(4)(2023): 1101-1120

http://doi.org/10.17576/jsm-2023-5204-06

 

Daily Spectral Ocean Surface Albedo due to Small Chlorophyll Concentrations and Cloudy Conditions for 440 nm Wavelength in Coastal Waters

(Permukaan Lautan Spektrum Harian Albedo disebabkan oleh Kepekatan Klorofil Kecil dan Keadaan Mendung untuk Panjang Gelombang 440 nm di Perairan Pantai)

 

PHILIPP GOLOVCHENKO1, YUSRI YUSUP2 & LIEW JUNENG1,*

 

1Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia

 

Received: 9 December 2022/Accepted: 25 March 2023

 

Abstract

The spectral daily Ocean Surface Albedo (OSA) is a sensitive parameter dependent on sea surface bio-optical properties and solar radiation distribution due to the transmissivity of the atmosphere. We analyzed the OSA sensitivity to the small concentrations of sea surface phytoplankton due to cloudy conditions, based on measured half-hourly global radiation data, and phytoplankton variability represented by chlorophyll-a concentrations at the upper layers over the Malacca Strait. The influence of the sea surface phytoplankton was examined by using the chlorophyll-a maximum absorption wavelength (440 nm) for a detailed examination of the real phytoplankton impact presented by small concentrations (0.39 - 0.69 mg/m3). The atmosphere transmittance determination was made over the period from January 2016 to March 2016 and January 2017 to March 2017 using hourly clearness index (KTh) estimation. The aim of current study was to examine the influence of sea surface phytoplankton concentrations on the radiation budget and to account the role that the phytoplankton plays in detail short-scale OSA parameterization. Daily timescale spectral OSA includes the bio-optical modelling part, which allowed us to investigate the patterns of diurnal variability of the main reflectance parameters, using Jin et al. scheme for albedo components (direct and diffuse) estimation, was computed. The OSA variability analysis confirmed the bio-optical feedback presented by apparent properties of the coastal waters for the observed conditions. The proposed calculation scheme accounted for the sea surface optical behavior with low concentrations of chlorophyll-a and suggests that albedo variability depends not only on the angle factors, even with the low phytoplankton influence (less than 1 mg/m3). It was found that the phytoplankton pigment absorption properties have less effect in albedo parameterization while the chlorophyll-a concentrations are less than 0.5 mg/m3.

 

Keywords: Clearness index; ocean surface albedo; ocean upper-layers; photosynthetically active radiation; phytoplankton influence

 

Abstrak

Spektral harian Albedo Permukaan Lautan (OSA) adalah suatu parameter sensitif yang bergantung kepada ciri bio-optik lautan dan taburan radiasi solar radiasi berdasarkan ketransmisian atmosfera. Kajian in menganalisis kesensitifan OSA terhadap kepekatan rendah fitoplankton permukaan lautan keadaan awan berdasarkan data cerapan radiasi global setengah-jam dan juga keragaman fitoplankton yang diwakili oleh kepekatan klorofil-a lapisan atas permukaan Laut China Selatan. Pengaruh fitoplankton permukaan lautan adalah dikaji berasaskan panjang gelombang serapan maksimum (40 nm) untuk mendapatkan gambaran jelas impak sebenar fitoplankton kepekatan rendah (0.39 - 0.69 mg/m3). Penentu transmisi atmosfera dihasilkan dalam tempoh Januari 2016 ke Mac 2016 dan juga dari Januari 2017 ke Mac 2017 dengan menggunakan jangkaan indeks kecerahan (KTh) berjam. Tujuan kajian ini adalah untuk mengkaji pengaruh fitoplakton permukaan laut ke atas bajet radiasi serta menentukan peranan fitoplankton dalam pemparameteran OSA skala pendek. Spektral OSA berskala harian dihitung termasuk bahagian permodelan bio-optik yang membolehkan kajian corak keragaman diurnal parameter pantulan utama menggunakan skema Jin et al. untuk komponen albedo (langsung dan sebaran). Analisis keragaman OSA mengesahkan bahawa suap-balik bio-optik wujud bagi ciri perairan persisiran keadaan cerapan. Skema pengiraan yang dicadangkan ini mengambi kira ciri optik permukaan laut dengan kepekatan klrofil-a rendah dan mencadangkan bahawa perubahan albedo bukan sahaja bergantung kepada faktor sudut walaupun dengan pengaruh rendah fitoplankton (kurang daripada 1 mg/m3). Didapati ciri serapan pigmen fitoplankton mempunyai kesan kecil terhadap pemparameteran albedo apabila kepekatan klorofil-a adalah rendah daripada 0.5 mg/m3.   

   

Kata kunci: Albedo permukaan laut; indeks kecerahan; lapisan atas lautan; pengaruh fitoplankton; radiasi aktif fotosintesis

 

REFERENCES

Ångström, A. 1924. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Q. J. Roy. Meteor. Soc. 50: 121-126.

Bricaud, A., Claustre, H., Ras, J. & Oubelkheir, K. 2004. Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. Journal of Geophysical Research 109: 1-12.

Carruthers, T., Longstaff, B., Dennison, W., Abal, E. & Aio, K. 2001. Measurement of light penetration in relation to seagrass. Editor 1- Short FT, Editor 2- Coles RG. Global Seagrass Research Methods. Amsterdam: Elsevier. pp. 369-392.

Dera, J. 1992. Small-scale air-sea interaction and its influence on the structure of water masses in the sea. Marine Physics. Elsevier Oceanography Series. Vol. 53. Chapter 7. 

Erbs, D.G., Klein, S.A. & Duffie, J.A. 1982. Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Solar Energy 28(2): 293-302.

Frouin, R. & Iacobellis, S.F. 2002. Influence of phytoplankton on the global radiation budget. Journal of Geophysical Research 107(D19): ACL 5-1-ACL 5-10.

Golovchenko, Ph., Yusup, Y., Juneng, L. & Tangang, F. 2020. Daily spectral ocean surface albedo (OSA) parameterization in case of clearness index (Kt) and phytoplankton variability in Malacca Strait. Estuarine, Coastal and Shelf Science 244: 1-10.

Gordon, H. 1987. Bio-optical model describing the distribution of irradiance at the sea surface resulting from a point source embedded in the ocean. Applied Optics 26(19): 4133-4148.

Gupta, S., Ritchey, N., Wilber, A. & Whitlock, C. 1999. A climatology of surface radiation budget derived from satellite data. J. Climate 12: 2691-2710.

Haltrin, V.I., McBride III, W.E. & Arnone, R.A. 2001. Spectral approach to calculate specular reflection of light from wavy water surface. Proceedings of D.S. Rozhdestvensky Optical Society: International Conference Current Problems in Optics of Natural Waters (ONW‘2001). St. Petersburg, Russia.

Hedges, J. & Keil, R. 1995. Sedimentary organic-matter preservation-an assessment and speculative synthesis. Marine Chemistry 49: 81-115.

Ideriah, F.J.K. & Suleman, S.O. 1989. Sky conditions at Ibadan during 1975-1980. Solar Energy 43(6): 325-330.

Jin, Z., Qiao, Y., Wang, Y., Fang, Y. & Yi, W. 2011. A new parameterization of spectral and broadband ocean surface albedo. Optics Express 19: 26429-26443.

Jin, Z., Charlock, T., Smith Jr., W. & Rutledge, K. 2004. A parameterization of ocean surface albedo. Geophys. Res. Let. 31: L22301.

Lewis, M.R., Carr, M.E., Feldman, G.C., Esaias, W. & McClain, C.R. 1990. Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean. Nature 347: 543-545. https://doi.org/10.1038/347543a0

Loisel, H. & Morel, A. 1998. Light scattering and chlorophyll concentration in case 1 waters: A reexamination. Limnol. Oceanogr. 43(5): 847-858.

Maleki, S.A., Hizam, H. & Gomes, C. 2017. Estimation of hourly, daily and monthly global solar radiation on inclined surfaces: Models re-visited. Energies 10(134): 1-28.

Morel, A. 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (Case 1 waters). Journal of Geophysical Research 93: 10749-10768.

Morel, A. & Maritorena, S. 2001. Bio-optical properties of oceanic waters: A reappraisal. Journal of Geophysical Research 106: 7163-7180.

Morel, A. & Gentili, B. 1991. Diffuse reflectance of oceanic waters: Its dependence on Sun angle as influenced by the molecular scattering contribution. Applied Optics 30: 4427-4438.

Morel, A. & Prieur, L. 1977. Analysis of variations in ocean color. Limnology and Oceanography 22: 709-722.

Ohlmann, J.C. & Siegel, D.A. 2000. Ocean radiant heating. Part II: Parameterizing solar radiation transmission through the upper ocean. J. Phys. Oceanogr. 30: 1849-1865.

Okogbue, E., Adedokun, J. & Holmgren, B. 2009. Hourly and daily clearness index and diffuse fraction at a tropical station, Ile-Lfe, Nigeria. International Journal of Climatology 29: 1035-1047.

Orgill, J.F. & Hollands, G.T. 1977. Correlation equation for hourly diffuse radiation on a horizontal surface. Solar Energy 19: 357-359.

Patara, L., Vichi, M., Masina, S., Fogli, P. & Manzini, E. 2012. Global response to solar radiation absorbed by phytoplankton in a coupled climate model. Climate Dynamics 39: 1951-1968.

Pope, R. & Fry, E. 1997. Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. Applied Optics 36: 8710-8723.

Prieur, L. & Sathyendranath, S. 1981. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments dissolved organic matter, and other particulate materials. Limnol. Oceanogr. 26: 671-689.

Santos, J., Pinazo, J. & Canada, J. 2003. Methodology for generating daily clearness index values Kt starting from the monthly average daily value Kt. Determining the daily sequence using stochastic models. Renewable Energy 28: 1523-1544.

Sanusi, Y.K. & Ojo, M.O. 2015. Evaluation of clearness index and diffuse ratio of some locations in South Western, Nigeria using solar radiation data. Journal of Applies Physics 7(5): 45-51.

Sathyendranath, S., Jackson, T., Brockmann, C., Brotas, V., Calton, B., Chuprin, A., Clements, O., Cipollini, P., Danne, O., Dingle, J., Donlon, C., Grant, M., Groom, S., Krasemann, H., Lavender, S., Mazeran, C., Mélin, F., Müller, D., Steinmetz, F., Valente, A., Zühlke, M., Feldman, G., Franz, B., Frouin, R., Werdell, J. & Platt, T. 2021. ESA Ocean Colour Climate Change Initiative (Ocean_Colour_cci): Version 5.0 Data. NERC EDS Centre for Environmental Data Analysis

Séférian, R., Baek, S., Boucher, O., Dufresne, J., Decharme, B., Saint-Martin, D. & Roehrig, R. 2018. An interactive ocean surface albedo scheme (OSAv1.0): Formulation and evaluation in ARPEGE-Climat (V 6.1) and LMDZ (V5A). Geosci. Model Dev. 11: 321-338.

Siegel, D.A., Ohlmann, J.C., Washburn, L., Bidigare, R.R., Nosse, C.T., Fields, E. & Zhou, Y. 1995. Solar radiation, phytoplankton pigments and the radiant heating of the equatorial Pacific warm pool. Journal of Geophysical Research: Oceans 100(C3): 4885-4891.

Solonenko, M.G. & Mobley, C.D. 2015. Inherent optical properties of Jerlov water types. Applied Optics 54: 5392-5401.

Smith, R. & Baker, K. 1981. Optical properties of the clearest natural waters (200-800 nm). Applied Optics 20(2): 177-184.

Somayajula, S., Devred, E., Belanger, E., Antoine, D., Velucci, V. & Babin, M. 2018. Evaluation of sea-surface photosynthetically available radiation algorithms under various sky conditions and solar elevations. Applied Optics 57: 3088-3103.

Sosik, H.M. & Mitchell, B.G. 1991. Absorption, fluorescence, and quantum yield for growth in nitrogen-limited Dunaliella tertiolecta. Limnol. Oceanogr. 36: 910-921.

Tan, C.K., Ishizaka, J., Matsumura, S., Yusoff, F.M. & Mohamed, Hj. Mohd. 2005. Seasonal variability of SeaWIFS chlorophyll a in the Malacca Straits in relation to Asian monsoon. Continental Shelf Research 26: 168-178.

Tetsuichi, F. & Taguchi, S. 2002. Variability in chlorophyll a specific absorption coefficient in marine phytoplankton as a function of cell size and irradiance. Journal of Plankton Research 24: 859-874.

Tsubo, M. & Walker, S. 2004. Relationships between photosynthetically active radiation and clearness index at Bloemfontein, South Africa. Theoretical and Applied Climatology 80: 17-25.

Ye, H., Kalhoro, M., Morozov, E., Tang, D., Wang, S. & Thies, Ph. 2017. Increased chlorophyll-a concentration in the South China Sea caused by occasional sea surface temperature fronts at peripheries of eddies. International Journal of Remote Sensing 39(13): 4360-4375.

Yoder, J.A. & Kennely, M.A. 2003. Seasonal and ENSO variability in global ocean phytoplankton chlorophyll derived from 4 years of SeaWiFS measurements. Global Biogeochemical Cycles 17: 1-14.

 

*Corresponding author; email: juneng@ukm.edu.my

 

 

   

 

previous