Sains Malaysiana 52(4)(2023): 1161-1171

http://doi.org/10.17576/jsm-2023-5204-10

 

Gibberellic Acid Supplements Mitigate the Sodium Chloride Effects on Onion Seed Germination and Its Physio-Chemical Attributes

(Suplemen Asid Giberelik Mengurangkan Kesan Natrium Klorida pada Percambahan Biji Bawang dan Atribut Fisio-Kimianya)

 

IKRAM-UL HAQ1, NAZIA PARVEEN GILL2, GHULAM YASIN3, SAHIFA MEMON1, ZAINAB SOOMRO1, FAHEEM AHMED BHATTI1,4, MEHWISH BALOCH1 & CHANDA BAKHTAWAR BALOCH1

 

1Institute of Biotechnology and Genetic Engineering (IBGE), University of Sindh, Jamshoro-76080, Pakistan

2Department of Statistics, University of Sindh, Jamshoro-76080, Pakistan

3Department of Botany, Bahauddin Zakariya University, Multan-60800, Pakistan

4Sindh Agriculture Department, Tandojam-70060, Pakistan

 

Received: 3 July 2022/Accepted: 17 March 2023

 

Abstract

The mitigative effect of gibberellic acid (GA3) for salt (NaCl) stresses on seed germination attributes of onion (Allium cepa L.) cultivar Nasarpuri was assessed. Seeds were moisturized with NaCl (0-, 100- and 200-mM) and GA3 (250 ppm) before and after sowing for seed germination in 1st week than in 2nd week, GA3 sprayed once foliarly and NaCl in rooting region. At the end of 1st week, an increase in seed germination rate was observed in seeds supplemented with GA3 from control (85.0%) to 97.5% and from NaCl stressed seeds (72.5% and 50.0%) to 85.0% and 62.5%, respectively (p ≤ 0.05). This reduction in seed germination was caused by salt stresses after 96th hours of sowing, inhibition in GA3-biosynthesis GA3 and delay in α-amylases activation observed in salt stressed seed cultures. The seedling vigor index (SVI) was observed higher in foliarly GA3 sprayed cultures of both control as well as saline stressed cultures. The seedlings supplemented with GA3, decrease in malondialdehyde (MDA), H2O2, Na+/K+, Na+ and Cl- contents, while increases seedling biomass, chlorophyll contents, total proteins, and sugars in NaCl stressed seedlings. Interestingly, GA3 also increased (p ≤ 0.05) the osmoprotectants in seedlings including abscisic acid (AsA), carotenoids, phenolics and proline contents to depict in stress alleviation. This study may be concluded by the fact that GA3 minimizes salinity stresses on seed germination as well as further seedling growth with the increased production of organic osmoprotectants as saline stress neutralizers.

 

Keywords: Allium cepa L.; antioxidative responses; gibberellic acid (GA3); H2O2 contents; saline stresses

 

Abstrak

Kesan mitigasi asid giberelik (GA3) untuk garam (NaCl) menegaskan sifat percambahan benih bawang (Allium cepa L.) kultivar Nasarpuri telah dinilai. Benih telah dilembapkan dengan NaCl (0-, 100- dan 200-mM) dan GA3 (250 ppm) sebelum dan selepas disemai untuk percambahan benih pada minggu pertama berbanding minggu ke-2, GA3 disembur sekali pada daun dan NaCl di kawasan pengakaran. Pada akhir minggu pertama, peningkatan kadar percambahan biji benih diperhatikan pada benih yang ditambah dengan GA3 daripada kawalan (85.0%) kepada 97.5% dan daripada benih bertekanan NaCl (72.5% dan 50.0%) kepada 85.0% dan 62.5% masing-masing (p). ≤ 0.05). Pengurangan dalam percambahan benih ini disebabkan oleh tegasan garam selepas 96 jam penyemaian, perencatan dalam GA3-biosintesis GA3 dan kelewatan dalam pengaktifan α-amilase yang diperhatikan dalam kultur benih bertekanan garam. Indeks vigor ankak benih (SVI) diperhatikan lebih tinggi dalam kultur semburan GA3 daun bagi kedua-dua kawalan dan juga kultur bertekanan garam. Anak benih yang ditambah dengan GA3 mengurangkan kandungan malondialdehid (MDA), H2O2, Na+/K+, Na+ dan Cl-, sambil meningkatkan biojisim anak benih, kandungan klorofil, jumlah protein dan gula pada anak pokok bertekanan NaCl. Menariknya, GA3 juga meningkatkan (p ≤ 0.05) osmopelindung dalam anak benih termasuk kandungan asid absisik (AsA), karotenoid, fenol dan prolin untuk menggambarkan pengurangan tekanan. Kajian ini boleh disimpulkan oleh fakta bahawa GA3 meminimumkan tegasan kemasinan pada percambahan biji benih serta pertumbuhan anak benih selanjutnya dengan peningkatan pengeluaran osmopelindung organik sebagai peneutral tegasan garam.

 

Kata kunci: Allium cepa L.; asid giberelik (GA3); gerak balas antioksidatif; kandungan H2O2, tegasan garam

 

REFERENCES

Abbas, S. & Waheed, A. 2021. Fiscal deficit and trade deficit nexus in Pakistan: An econometric inquiry. Panoeconomicus 68(5): 745-763.

Aglaia, L., Georgios, Z., Theodoros, V. & Ioannis, N. 2011. Effect of NaCl and GA3 on seed germination and seedling growth of eleven medicinal and aromatic crops. Journal of Medicinal Plants Research 5(17): 4065-4073.

Ahanger, M., Qin, C., Maodong, Q., Dong, X., Ahmad, P., Abd-Allah, E. & Zhang, L. 2019. Spermine application alleviates salinity induced growth and photosynthetic inhibition in Solanum lycopersicum by modulating osmolyte and secondary metabolite accumulation and differentially regulating antioxidant metabolism. Plant Physiology and Biochemistry 144: 1-13.

Ahmad, S., Cui, W., Kamran, M., Ahmad, I., Meng, X., Wu, X., Su, W., Javed, T., ElSerehy, H.A., Wu, X. & Jia, Z. 2021. Exogenous application of melatonin induces tolerance to salt stress by improving the photosynthetic efficiency and antioxidant defense system of maize seedling. Journal of Plant Growth Regulation 40(3): 1270-1283.

Ali, M., Hossain, M., Zakaria, M., Hossain, T., Naznin, A. & Islam, M. 2015. Effect of GA3 on quality seed production of onion in Bangladesh. Ecofriendly Agricultural Journal 8(03): 47-50.

Allakhverdiev, S., Sakamoto, A., Nishiyama, Y., Inaba, M. & Murata, N. 2000. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology 123(3): 1047-1056.

Arnon, D. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24(1): 1-15.

Azam, A. & Shafique, M. 2017. Agriculture in Pakistan and its impact on economy. International Journal of Advanced Science and Technology 103: 47-60.

Bates, L.S., Waldren, R.P. & Teare, I.J.P. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39(1): 205-207.

Belaqziz, R., Romane, A. & Abbad, A. 2009. Salt stress effects on germination, growth and essential oil content of an endemic thyme species in Morocco (Thymus maroccanus Ball.). Journal of Applied Sciences Research 5(July): 858-863.

Brennan, T. & Frenkel, C. 1977. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiology 59(3): 411-416.

Caliński, T. 1981. Principles and procedures of statistics: A biometrical approach. Biometrics 37(4): 859-860. doi:10.2307/2530180 

Camara, M., Vandenberghe, L., Rodrigues, C., de Oliveira, J., Faulds, C., Bertrand, E. & Soccol, C. 2018. Current advances in gibberellic acid (GA3) production, patented technologies and potential applications. Planta 248(5): 1049-1062.

Catsky, J. 1974. Water content. In Methods of Studying Plant Water Relations. Berlin: Springer-Verlag. pp. 121-131.

Chapman, H. & Pratt, P. 1961. Method of Analysis for Soils, Plants and Waters. University of California (Riverside), Division of Agriculture Sciences.

Chauhan, A., Abu Amarah, B., Kumar, A., Verma, J., Ghramh, H., Khan, K. & Ansari, M. 2019. Influence of gibberellic acid and different salt concentrations on germination percentage and physiological parameters of oat cultivars. Saudi Journal of Biological Sciences 26(6): 1298-1304.

Colomer-Winter, C., Flores-Mireles, A., Baker, S., Frank, K., Lynch, A., Hultgren, S., Kitten, T. & Lemos, J. 2018. Manganese acquisition is essential for virulence of Enterococcus faecalis. PLoS Pathogens 14(9): e1007102.

Dar, Z., Dar, S., Khan, J., Lone, A., Langyan, S., Lone, B., Kanth, R.H., Iqbal, A., Rane, J., Wani, S.H., Alfarraj, S., Alharbi, S.A., Brestic, M. & Ansari, M. 2021. Identification for surrogate drought tolerance in maize inbred lines utilizing high-throughput phenomics approach. PLoS ONE 16(7): e0254318.

Dubois, M., Gilles, K., Hamilton, J., Rebers, P. & Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28(3): 350-356.

FAO. 2021. FAOSTAT. Food and Agriculture Organization of the United Nations. Rome: FAO.

Gharib, F., Zeid, I., Ghazi, S. & Ahmed, E. 2018. Physiological effects of ascorbic and gallic acids on growth and metabolic activities of cowpea (Vigna unguiculata L.) plants. Journal of Plant Physiol. and Pathology 6(4): 2-9.

Ghodrat, V. & Rousta, M. 2012. Effect of priming with gibberellic acid (GA3) on germination and growth of corn (Zea mays L.) under saline conditions. International Journal of Agriculture and Crop Sciences 4(13): 882-885.

Hamayun, M., Khan, S., Khan, A., Shin, J., Ahmad, B., Shin, D. & Lee, I. 2010. Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. Journal of Agricultural and Food Chemistry 58(12): 7226-7232.

Heath, R. & Packer, L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125(1): 189-198.

Hillel, D., Braimoh, A. & Vlek, P. 2008. Soil degradation under irrigation. In Land Use and Soil Resources. Springer. pp: 101-119.

Ibrahim, M., Ali, A., Elsiddig, A., Zhou, G., Nimir, N., Agbna, G. & Zhu, G. 2021. Mitigation effect of biochar on sorghum seedling growth under salinity stress. Pakistan Journal of Botany 53(2): 387-392.

Ibrahim, M., Zhu, X., Zhou, G., Ali, A., Ahmad, I. & Farah, G. 2018. Nitrogen fertilizer alleviated negative impacts of NaCl on some physiological parameters of wheat. Pakistan Journal of Botany 50(6): 2097-2104.

Javid, M., Sorooshzadeh, A., Moradi, F., Modarres, S., Mohammad, S. & Allahdadi, I. 2011. The role of phytohormones in alleviating salt stress in crop plants. Australian Journal of Crop Science 5(6): 726-734.

Kadayifci, A., Tuylu, G., Ucar, Y. & Cakmak, B. 2005. Crop water use of onion (Allium cepa L.) in Turkey. Agricultural Water Management 72(1): 59-68.

Kandil, A., Sharief, A., Abido, W. & Awed, A. 2014. Effect of gibberellic acid on germination behaviour of sugar beet cultivars under salt stress conditions of Egypt. Sugar Tech 16(2): 211-221.

Kaur, S., Gupta, A. & Kaur, N. 1998. Gibberellin A3 reverses the effect of salt stress in chickpea (Cicer arietinum L.) seedlings by enhancing amylase activity and mobilization of starch in cotyledons. Plant Growth Regulation 26(2): 85-90.

Law, M., Charles, S. & Halliwell, B. 1983. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochemical Journal 210(3): 899-903.

Lerner, H.R. & Amzallag, G.N. 1994. The response of plants to salinity: A working hypothesis. In Biochemical and Cellular Mechanisms of Stress Tolerance in Plants, edited by Cherry, J.H. NATO ASI Series, vol 86. Berlin, Heidelberg: Springer. pp: 463-476.

Lima, M. & Leonardo, T. 2008. Onion production in salinized soil. Brazilian Journal of Agricultural and Environmental Engineering 12: 231-235.

Lin, J. & Stafford, A. 1987. Comparison of the endogenous gibberellins in the shoots and roots of vernalized and non-vernalized Chinese Spring wheat seedlings. Phytochemistry 26(9): 2485-2488.

Liu, L., Xia, W., Li, H., Zeng, H., Wei, B., Han, S. & Yin, C. 2018. Salinity inhibits rice seed germination by reducing α-amylase activity via decreased bioactive gibberellin content. Frontiers in Plant Science 9: 275.

Lowry, O. & Rosebrough, N. 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193(1): 265-275.

Lutts, S., Kinet, J. & Bouharmont, J. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany 78(3): 389-398.

Machado, R. & Serralheiro, R. 2017. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3(2): 30.

Mahender, A., Anandan, A. & Pradhan, S. 2015. Early seedling vigour, an imperative trait for direct-seeded rice: An overview on physio-morphological parameters and molecular markers. Planta 241(5): 1027-1050.

Majcherczyk, A., Rakoczy, L. & Huttermann, A. 1986. Improvements in methods for determination of abscisic acid and indole-3-acetic acid by high-performance liquid chromatography. Journal of Chromatography 357: 399-408.

Manniche, L. 1989. An Ancient Egyptian Herbal University of Texas Press Austin. Vol. 163.

Marles, R. & Farnsworth, N. 1995. Antidiabetic plants and their active constituents. Phytomedicine 2(2): 137-189.

Mbarki, S., Skalicky, M., Vachova, P., Hajihashemi, S., Jouini, L., Zivcak, M., Tlustos, P., Brestic, M., Hejnak, V. & Khelil, A.Z. 2020. Comparing salt tolerance at seedling and germination stages in local populations of Medicago ciliaris L. to Medicago intertexta L. and Medicago scutellata L. Plants 9(4): 526.

Miller, G. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3): 426-428.

Moons, A., Bauw, G., Prinsen, E., Van Montagu, M. & Van-Der, S.D. 1995. Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiology 107(1): 177-186.

Munns, R., Schachtman, D. & Condon, A. 1995. The significance of a two-phase growth response to salinity in wheat and barley. Functional Plant Biology 22(4): 561-569.

Nasri, N., Maatallah, S., Saidi, I. & Lachaal, M. 2017. Influence of salinity on germination, seedling growth, ion content and acid phosphatase activities of Linum usitatissimum L. Journal of Animal and Plant Sciences 27(2): 517-521.

Nawaz, K., Hussain, K., Majeed, A., Khan, F., Afghan, S. & Ali, K. 2010. Fatality of salt stress to plants: Morphological, physiological and biochemical aspects. African Journal of Biotechnology 9(34): 5475-5480.

Negrao, S., Schmöckel, S. & Tester, M. 2017. Evaluating physiological responses of plants to salinity stress. Annals of Botany 119(1): 1-11.

Nounjan, N. & Theerakulpisut, P. 2012. Effects of exogenous proline and trehalose on physiological responses in rice seedlings during salt-stress and after recovery. Plant Soil and Environment 58(7): 309-315.

Parida, A., Das, A. & Mittra, B. 2004. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees Structure and Function 18(2): 167-174.

Rahman, M., Haque, M., Karim, M. & Ahmed, M. 2006. Effects of gibberellic acid (GA3) on breaking dormancy in garlic (Allium sativum L.). International Journal of Agriculture and Biology 8(1): 63-65.

Roychoudhury, A., Basu, S. & Sengupta, D. 2009. Effects of exogenous abscisic acid on some physiological responses in a popular aromatic Indica rice compared with those from two traditional non-aromatic Indica rice cultivars. Acta Physiologiae Plantarum 31(5): 915-926.

Salih, E., Zhou, G., Muddathir, A., Ibrahim, M., Ahmed, N., Ali, A., Ashraf, N.A. & Ahmad, I. 2022. Effects of seeds priming with plant growth regulators on germination and seedling growth of hargel (Solenostemma argel (Del.) Hayne) under salinity stress. Pakistan Journal of Botany 54(5): 1579-1587.

Srivastava, N. & Srivastava, A. 2007. Influence of gibberellic acid on 14CO2 metabolism, growth, and production of alkaloids in Catharanthus roseus. Photosynthetica 45(1): 156-160.

Steel, R.G.D. & Torrie, J.H. 1980. Principles and Procedures of Statistics, A Biometrical Approach. McGraw-Hill Kogakusha, Ltd.

Sumner, J. 2019. Plants Go to War: A Botanical History of World War II. Jefferson, North California: McFarland and Company, Inc.

Takemura, T., Hanagata, N., Sugihara, K., Baba, S., Karube, I. & Dubinsky, Z. 2000. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquatic Botany 68(1): 15-28.

Ti, H., Li, Q., Zhang, R., Zhang, M., Deng, Y., Wei, Z., Chi, J. & Zhang, Y. 2014. Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China. Food Chemistry 159: 166-174.

Tuna, A., Kaya, C., Dikilitas, M. & Higgs, D. 2008. The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany 62(1): 1-9.

Turner, N. 1981. Techniques and experimental approaches for the measurement of plant water status. Plant and Soil 58(1): 339-366.

Vetrano, F., Moncada, A. & Miceli, A. 2020. Use of gibberellic acid to increase the salt tolerance of leaf lettuce and rocket grown in a floating system. Agronomy, MDPI 10(4): 505.

Waterborg, J. 2009. The Lowry method for protein quantitation. In The Protein Protocols Handbook. Springer. pp: 7-10.

Wellburn, A. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144(3): 307-313.

Wu, Y., Jin, X., Liao, W., Hu, L., Dawuda, M., Zhao, X., Liu, J.Li, S., Wang, D., Guan, H. &Yu, J. 2018. 5-Aminolevulinic acid (ALA) alleviated salinity stress in cucumber seedlings by enhancing chlorophyll synthesis pathway. Frontiers in Plant Science 9: 635.

Yurekli, F., Porgali, Z. & Turkan, I. 2004. Variations in abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin concentrations in two bean species subjected to salt stress. Acta Biologica Cracoviensia Series Botanica 46: 201-212.

Zhang, J. & Zhang, X. 1994. Can early wilting of old leaves account for much of the ABA accumulation in flooded pea plants? Journal of Experimental Botany 45(9): 1335-1342.

 

*Corresponding author; email: rao.ikram@yahoo.com

 

 

 

 

previous