Sains Malaysiana 52(4)(2023):
1173-1188
http://doi.org/10.17576/jsm-2023-5204-11
Sensitive
and Selective Detection of Chloroform by Current-Voltage Using ZnO Nanorods Modified Electrode
(Pengesanan Sensitif dan Memilih Kloroform oleh Voltan Arus Menggunakan Elektrod Ubah Suai ZnO Nanorod)
HASLINDA ABDUL HAMID1,*,
PANAPAN KUNAKORNWATTANA2, NORAIN ISA1,3 & KHAIRUNISAK
ABDUL RAZAK4
1Department of Applied Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Penang, Malaysia
2Ecospa Company Limited, 1/1 Soi Phatthanakan 63, Intersection 2, Prawet District, 10250 Bangkok, Thailand
3School of Chemical Engineering, College of
Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh,
Penang, Malaysia
4School of Materials and Mineral Resources Engineering,
Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal,
Penang, Malaysia
Received: 20 July 2022/Accepted: 14 March 2023
Abstract
The development of in situ chloroform detection is crucial due to the high risk of carcinogenic effects
associated with chloroform exposure. In this study, an electrochemical-based
chloroform sensor was fabricated using undoped ZnO nanorods on indium tin oxide
(ZnONRs/ITO) electrode to detect chloroform in
aqueous-phase samples. Based on the results, the FESEM imaging showed that the ZnONRs exhibited an evenly distributed circular structure
with a diameter of 62-90 nm, while the EDX and XRD findings confirmed the
presence of Zn and O elements deposited on the electrode surface. Furthermore,
the phosphate buffer solution (PBS) solution significantly affected the
performance of the modified electrode with an optimal concentration and pH of
0.1 M and pH 7. The results also highlighted the vital function of the modified ZnONRs/ITO electrode as an efficient electron
mediator and its catalytic potential to induce chloroform oxidation. Most
importantly, the modified ZnONRs/ITO electrode was
able to detect the presence of chloroform in real seawater samples, where the
repeatability and reproducibility tests achieved a Relative Standard Deviation
(RSD) of 1.41% and 2.61%, respectively, indicating the exceptional performance
of the modified electrode. Moreover, the modified ZnONRs/ITO
electrode recorded a low limit of detection and high sensitivity of 1.50 µM and
2.11 µA/cm2·mM, respectively, within a 0.010-10 mM linear dynamic range. In conclusion, the current-voltage (I-V) method proved
the reliable, satisfactory, and effective fabrication of the modified ZnONRs/ITO electrode for chloroform sensing in
aqueous-phase samples, including in real seawater samples.
Keywords: Chloroform
detection; I-V method; seawater; undoped ZnO nanorods
Abstrak
Pembangunan pengesanan kloroform in situ adalah penting kerana risiko tinggi kesan karsinogenik yang berkaitan dengan pendedahan kloroform. Dalam kajian ini, penderia kloroform berasaskan elektrokimia telah direka menggunakan nanorod ZnO yang tidak didop pada elektrod indium tin oksida (ZnONRs/ITO) untuk mengesan kloroform dalam sampel fasa akueus. Berdasarkan keputusan, pengimejan FESEM menunjukkan bahawa ZnONRs menunjukkan struktur bulat yang tersebar sama rata dengan diameter 62-90 nm, manakala penemuan EDX dan XRD mengesahkan kehadiran unsur Zn dan O yang dienapkan pada permukaan elektrod. Tambahan pula, larutan PBS memberi kesan ketara kepada prestasi elektrod diubah suai dengan kepekatan optimum dan pH pada 0.1 M dan pH 7. Hasilnya juga menyerlahkan fungsi penting elektrod ZnONRs/ITO yang diubah suai sebagai pengantara elektron yang cekap dan potensi pemangkinnya untuk mendorong pengoksidaan kloroform. Paling penting, elektrod ZnONRs/ITO yang diubah suai dapat mengesan kehadiran kloroform dalam sampel air laut sebenar dengan ujian kebolehulangan dan kebolehhasilan mencapai Sisihan Piawai Relatif (RSD) masing-masing 1.41% dan 2.61%, menunjukkan prestasi luar biasa bagi elektrod yang diubah suai. Selain itu, elektrod ZnONRs/ITO yang diubah suai merekodkan had pengesanan yang rendah dan kepekaan tinggi masing-masing 1.50 µM dan 2.11 µA/cm2·mM dalam julat dinamik linear 0.010-10 mM. Kesimpulannya, kaedah I-V membuktikan fabrikasi yang boleh dipercayai, memuaskan dan berkesan bagi elektrod ZnONR/ITO yang diubah suai untuk penderiaan kloroform dalam sampel fasa akueus, termasuk dalam sampel air laut sebenar.
Kata kunci:
Air laut; kaedah I-V; pengesanan kloroform; ZnO yang tidak didop
REFERENCES
Abdullah, M.M., Rahman,
M.M., Bouzid, H., Faisal, M., Khan, S.B., Al-Sayari, S.A. & Ismail, A.A.
2015. Sensitive and fast response ethanol chemical sensor based on as-grown Gd2O3 nanostructures. Journal of Rare Earths 33(2): 214-220.
https://doi.org/10.1016/S1002-0721(14)60405-1
Abdulrahman,
A.F., Ahmed, S.M., Barzinjy, A.A., Hamad, S.M., Ahmed, N.M. & Almessiere,
M.A. 2021. Fabrication and characterization of high-quality UV photodetectors
based Zno nanorods using traditional and modified chemical bath deposition
methods. Nanomaterials 11(3): 1-26. https://doi.org/10.3390/nano11030677
Banitaba,
S.N. & Ehrmann, A. 2021. Application of electrospun nanofibers for
fabrication of versatile and highly efficient electrochemical devices: A
review. Polymers 13(11): 1741. https://doi.org/10.3390/polym13111741
Benavides,
L.F., Marín, J.D., Rosales, C. & García, J. 2021. Development and
validation of a method for the analysis of zinc oxide in cosmetic matrices by
flame atomic absorption spectroscopy. Journal of Analytical Methods in
Chemistry 2021: Article ID. 8840723. https://doi.org/10.1155/2021/8840723
Chalangar,
E., Nur, O., Willander, M., Gustafsson, A. & Pettersson, H. 2021. Synthesis
of vertically aligned ZnO nanorods using sol-gel seeding and colloidal
lithography patterning. Nanoscale Research Letters 16: 46.
https://doi.org/10.1186/s11671-021-03500-7
Chaudhary, S.,
Ahmad Umar, Bhasin, K.K. & Baskoutas, S. 2018. Chemical sensing
applications of ZnO nanomaterials. Materials 11(2): 287.
Cho, G.,
Azzouzi, S., Zucchi, G. & Lebental, B. 2022. Electrical and electrochemical
sensors based on carbon nanotubes for the monitoring of chemicals in water - A
review. Sensors 22(1): 218. https://doi.org/10.3390/s22010218
Danielson,
E., Dhamodharan, V., Porkovich, A., Kumar, P., Jian, N., Ziadi, Z.,
Grammatikopoulos, P., Sontakke, V.A., Yokobayashi, Y. & Sowwan, M. 2019.
Gas-phase synthesis for label-free biosensors: Zinc-oxide nanowires
functionalized with gold nanoparticles. Scientific Reports 9: 17370.
https://doi.org/10.1038/s41598-019-53960-2
Feliciano-Ramos,
I., Ortiz-Quiles, E.O., Cunci, L., Díaz-Cartagena, D.C., Resto, O. &
Cabrera, C.R. 2016. Unsupported palladium nanoparticles for ethanol cyclic
voltammetric sensing in alkaline media. Journal of Solid State
Electrochemistry 20(4): 1011-1017.
Fong, J.K.,
Pena, J.K., Xue, Z.L., Alam, M.M., Sampathkumaran, U. & Goswami, K. 2015.
Optical sensors for the detection of trace chloroform. Analytical Chemistry 87(3): 1569-1574.
Galdámez-Martinez,
A., Santana, G., Güell, F., Martínez-Alanis, P.R. & Dutt, A. 2020.
Photoluminescence of Zno nanowires: A review. Nanomaterials 10(5): 857. https://doi.org/10.3390/nano10050857
Gawenda, T.
2021. Production methods for regular aggregates and innovative developments in
Poland. Minerals 11(12): 1429. https://doi.org/10.3390/min11121429
Gomez-Flores,
A., Bradford, S.A., Wu, L. & Kim, H. 2019. Interaction energies for hollow
and solid cylinders: Role of aspect ratio and particle orientation. Colloids
and Surfaces A: Physicochemical and Engineering Aspects 580(June): 123781.
https://doi.org/10.1016/j.colsurfa.2019.123781
González-Meza,
O.A., Larios-Durán, E.R., Gutiérrez-Becerra, A., Casillas, N., Escalante, J.I.
& Bárcena-Soto, M. 2019. Development of a Randles-Ševčík-like equation
to predict the peak current of cyclic voltammetry for solid metal
hexacyanoferrates. Journal of Solid State Electrochemistry 23(11):
3123-3133. https://doi.org/10.1007/s10008-019-04410-6
Grau, J.,
Azorín, C., Benedé, J.L., Chisvert, A. & Salvador, A. 2022. Use of green
alternative solvents in dispersive liquid-liquid microextraction: A review. Journal
of Separation Science 45(1): 210-222.
https://doi.org/10.1002/jssc.202100609
Hamid, H.A.,
Lockman, Z., Hattori, T. & Abdul, K. 2019. Sensitive and selective
chloroform sensor using Fe2O3 nanoparticle ‑
Decorated ZnO nanorods in an aqueous solution. Journal of Materials Science:
Materials in Electronics 30: 18990-19000.
https://doi.org/10.1007/s10854-019-02256-2
Hamid, H.A.,
Lockman, Z., Mohamad Nor, N., Zakaria, N.D. & Abdul Razak, K. 2021.
Sensitive detection of Pb ions by square wave anodic stripping voltammetry by
using iron oxide nanoparticles decorated zinc oxide nanorods modified
electrode. Materials Chemistry and Physics 273(June): 125148.
https://doi.org/10.1016/j.matchemphys.2021.125148
Khan, I.,
Saeed, K. & Khan, I. 2017. Nanoparticles: Properties, applications and
toxicities. Arabian Journal of Chemistry 1: 1-25.
http://dx.doi.org/10.1016/j.arabjc.2017.05.011
Lagauche,
M., Larmier, K., Jolimaitre, E., Barthelet, K., Chizallet, C., Favergeon, L.
& Pijolat, M. 2017. Thermodynamic characterization of the hydroxyl group on
the γ-alumina surface by the energy distribution function. Journal of
Physical Chemistry C 121(31): 16770-16782.
https://doi.org/10.1021/acs.jpcc.7b02498
Li, X.,
Chen, X., Yi, Z., Zhou, Z., Tang, Y. & Yi, Y. 2019. Fabriction of ZnO
Nanorods with strong UV absorption and different hydrophobicity on foamed
nickel under different hydrothermal conditions. Micromachines 10(3):
164.
Mehdi B.,
Amiri, A., Karimabadi, F., Di Masi, S., Maleki, B., Adibian, F., Pourali, A.R.
& Malitesta, C. 2021. Magnetic MWCNTs-dendrimer: A potential modifier for
electrochemical evaluation of As (III) ions in real water samples. Journal
of Electroanalytical Chemistry 888(9): 115059.
https://doi.org/10.1021/acsanm.0c01419
Mirzaei, A.,
Leonardi, S.G. & Neri, G. 2016. Detection of hazardous volatile organic
compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceramics
International 42: 15119-15141.
Mohamad
Ahad, Zulayka, I., Harun, S.W., Gan, S.N. & Phang, S.W. 2018. Polyaniline
(PAni) optical sensor in chloroform detection. Sensors and Actuators, B:
Chemical 261: 97-105. https://doi.org/10.1016/j.snb.2018.01.082
Nguyen,
T.H.P., Tonezzer, M., Le Dang, T.T., Vu, Q.K., Tran, Q.H., Nguyen, D.H. &
Nguyen, V.H. 2019. Stable electrochemical measurements of platinum
screen-printed electrodes modified with vertical ZnO nanorods for bacterial
detection. Journal of Nanomaterials 2019: 2341268. https://doi.org/10.1155/2019/2341268
Nie, M.X.,
Li, X.Z., Liu, S.R. & Guo, Y. 2015. ZnO/CuO/Al2O3 composites for chloroform detection. Sensors and Actuators, B: Chemical 210: 211-217.
Nurhaswani
Alias, Siti Azlina Rosli, Nurliyana Abu Hasan Sazalli, Haslinda Abdul Hamid,
Sarasijah Arivalakan, Siti Nur Hanisah Umar, Beh Khi Khim, Bibi Nadia Taib,
Yeoh Kar Keat, Khairunisak Abdul Razak, Yeoh Fei Yee, Zuhailawati Hussain, Elmi
Abu Bakar, Noor Fazreena Kamaruddin, Asrulnizam Abd. Manaf, Naoki Uchiyama, Tan
Wai Kian, Atsunori Matsuda, Go Kawamura, Kazuaki Sawada, Akihiko Matsumoto
& Zainovia Lockman. 2020. Metal oxide for heavy metal detection and
removal. In Metal Oxide Powder Technologies: Fundamental, Processing Methods
and Application. pp. 299-332. https://doi.org/10.1016/b978-0-12-817505-7.00015-4
Peng, Z.,
Feng, X., Tong, B., Chen, D., Shi, J., Zhi, J. & Dong, Y. 2016. The
selective detection of chloroform using an organic molecule with
aggregation-induced emission properties in the solid state as a fluorescent sensor. Sensors and Actuators, B: Chemical 232: 264-268.
https://doi.org/10.1016/j.snb.2016.03.136
Prasadam,
V.P., Huerta Flores, A.M., Audinot, J.N. & Bahlawane, N. 2022. CNT-ZnO
core-shell photoanodes for photoelectrochemical water splitting. Coatings 12(1). https://doi.org/10.3390/coatings12010047
Rahman, M.M.
2017. RSC advances for environmental safety. RSC Advances 7:
22627-22639.
Sheng, K.,
Lu, H., Sun, A., Wang, Y., Liu, Y., Chen, F., Bian, W., Li, Y., Kuang, R. &
Sun, D. 2019. A naked-eye colorimetric sensor for chloroform. Chinese
Chemical Letters 30(4): 895-898.
https://doi.org/10.1016/j.cclet.2019.01.027
Teimoori,
F., Khojier, K. & Dehnavi, N.Z. 2017. Investigation of sensitivity and
selectivity of ZnO thin film to volatile organic compounds. Journal of
Theoretical and Applied Physics 11(2): 157-163.
https://doi.org/10.1007/s40094-017-0253-0
Veerapandian,
S.K.P., Leys, C., De Geyter, N. & Rin Moren. 2017. Abatement of VOCs using
packed bed non-thermal plasma reactors: A review. Catalysts 7(4): 1-33.
Wu, Q., Ma,
H., Ling, K., Gan, N., Cheng, Z., Gu, L., Cai, S., An, Z., Shi, H. & Huang,
W. 2018. Reversible ultralong organic phosphorescence for visual and selective
chloroform detection. ACS Applied Materials and Interfaces 10(39):
33730-33736. https://doi.org/10.1021/acsami.8b13713
Yan, H.,
Tian, X., Sun, J. & Ma, F. 2015. Enhanced sensing properties of CuO
nanosheets for volatile organic compounds detection. Journal of Materials
Science: Materials in Electronics 26(1): 280-287. https://doi.org/10.1007/s10854-014-2396-y
Yaqub, G.,
Khan, U., Sadiq, Z. & Akram, H. 2017. A rapid and sensitive method for
determination of chlorinated by-products. J. Chil. Chem. Soc 2: 2-5.
Yi, G., Li,
X., Yuan, Y. & Zhang, Y. 2019. Redox active Zn/ZnO duo generating superoxide
(O2−) and H2O2 under all
conditions for environmental sanitation. Environmental Science: Nano 6(1): 68-74. https://doi.org/10.1039/c8en01095a
Zhang, T.,
Xing, Y., Wang, G. & He, S. 2021. High sensitivity continuous monitoring of
chloroform gas by using wavelength modulation photoacoustic spectroscopy in the
near-infrared range. Applied Sciences (Switzerland) 11(15): 6992.
https://doi.org/10.3390/app11156992.
*Corresponding author; email: hasli8366@uitm.edu.my
|