Sains Malaysiana 52(4)(2023): 1173-1188

http://doi.org/10.17576/jsm-2023-5204-11

 

Sensitive and Selective Detection of Chloroform by Current-Voltage Using ZnO Nanorods Modified Electrode

(Pengesanan Sensitif dan Memilih Kloroform oleh Voltan Arus Menggunakan Elektrod Ubah Suai ZnO Nanorod)

 

HASLINDA ABDUL HAMID1,*, PANAPAN KUNAKORNWATTANA2, NORAIN ISA1,3 & KHAIRUNISAK ABDUL RAZAK4

 

1Department of Applied Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Penang, Malaysia

2Ecospa Company Limited, 1/1 Soi Phatthanakan 63, Intersection 2, Prawet District, 10250 Bangkok, Thailand

3School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Penang, Malaysia

4School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

 

Received: 20 July 2022/Accepted: 14 March 2023

 

Abstract

The development of in situ chloroform detection is crucial due to the high risk of carcinogenic effects associated with chloroform exposure. In this study, an electrochemical-based chloroform sensor was fabricated using undoped ZnO nanorods on indium tin oxide (ZnONRs/ITO) electrode to detect chloroform in aqueous-phase samples. Based on the results, the FESEM imaging showed that the ZnONRs exhibited an evenly distributed circular structure with a diameter of 62-90 nm, while the EDX and XRD findings confirmed the presence of Zn and O elements deposited on the electrode surface. Furthermore, the phosphate buffer solution (PBS) solution significantly affected the performance of the modified electrode with an optimal concentration and pH of 0.1 M and pH 7. The results also highlighted the vital function of the modified ZnONRs/ITO electrode as an efficient electron mediator and its catalytic potential to induce chloroform oxidation. Most importantly, the modified ZnONRs/ITO electrode was able to detect the presence of chloroform in real seawater samples, where the repeatability and reproducibility tests achieved a Relative Standard Deviation (RSD) of 1.41% and 2.61%, respectively, indicating the exceptional performance of the modified electrode. Moreover, the modified ZnONRs/ITO electrode recorded a low limit of detection and high sensitivity of 1.50 µM and 2.11 µA/cm2·mM, respectively, within a 0.010-10 mM linear dynamic range. In conclusion, the current-voltage (I-V) method proved the reliable, satisfactory, and effective fabrication of the modified ZnONRs/ITO electrode for chloroform sensing in aqueous-phase samples, including in real seawater samples.

 

Keywords: Chloroform detection; I-V method; seawater; undoped ZnO nanorods

 

Abstrak

Pembangunan pengesanan kloroform in situ adalah penting kerana risiko tinggi kesan karsinogenik yang berkaitan dengan pendedahan kloroform. Dalam kajian ini, penderia kloroform berasaskan elektrokimia telah direka menggunakan nanorod ZnO yang tidak didop pada elektrod indium tin oksida (ZnONRs/ITO) untuk mengesan kloroform dalam sampel fasa akueus. Berdasarkan keputusan, pengimejan FESEM menunjukkan bahawa ZnONRs menunjukkan struktur bulat yang tersebar sama rata dengan diameter 62-90 nm, manakala penemuan EDX dan XRD mengesahkan kehadiran unsur Zn dan O yang dienapkan pada permukaan elektrod. Tambahan pula, larutan PBS memberi kesan ketara kepada prestasi elektrod diubah suai dengan kepekatan optimum dan pH pada 0.1 M dan pH 7. Hasilnya juga menyerlahkan fungsi penting elektrod ZnONRs/ITO yang diubah suai sebagai pengantara elektron yang cekap dan potensi pemangkinnya untuk mendorong pengoksidaan kloroform. Paling penting, elektrod ZnONRs/ITO yang diubah suai dapat mengesan kehadiran kloroform dalam sampel air laut sebenar dengan ujian kebolehulangan dan kebolehhasilan mencapai Sisihan Piawai Relatif (RSD) masing-masing 1.41% dan 2.61%, menunjukkan prestasi luar biasa bagi elektrod yang diubah suai. Selain itu, elektrod ZnONRs/ITO yang diubah suai merekodkan had pengesanan yang rendah dan kepekaan tinggi masing-masing 1.50 µM dan 2.11 µA/cm2·mM dalam julat dinamik linear 0.010-10 mM. Kesimpulannya, kaedah I-V membuktikan fabrikasi yang boleh dipercayai, memuaskan dan berkesan bagi elektrod ZnONR/ITO yang diubah suai untuk penderiaan kloroform dalam sampel fasa akueus, termasuk dalam sampel air laut sebenar.

 

Kata kunci: Air laut; kaedah I-V; pengesanan kloroform; ZnO yang tidak didop

 

REFERENCES

Abdullah, M.M., Rahman, M.M., Bouzid, H., Faisal, M., Khan, S.B., Al-Sayari, S.A. & Ismail, A.A. 2015. Sensitive and fast response ethanol chemical sensor based on as-grown Gd2O3 nanostructures. Journal of Rare Earths 33(2): 214-220. https://doi.org/10.1016/S1002-0721(14)60405-1

Abdulrahman, A.F., Ahmed, S.M., Barzinjy, A.A., Hamad, S.M., Ahmed, N.M. & Almessiere, M.A. 2021. Fabrication and characterization of high-quality UV photodetectors based Zno nanorods using traditional and modified chemical bath deposition methods. Nanomaterials 11(3): 1-26. https://doi.org/10.3390/nano11030677

Banitaba, S.N. & Ehrmann, A. 2021. Application of electrospun nanofibers for fabrication of versatile and highly efficient electrochemical devices: A review. Polymers 13(11): 1741. https://doi.org/10.3390/polym13111741

Benavides, L.F., Marín, J.D., Rosales, C. & García, J. 2021. Development and validation of a method for the analysis of zinc oxide in cosmetic matrices by flame atomic absorption spectroscopy. Journal of Analytical Methods in Chemistry 2021: Article ID. 8840723. https://doi.org/10.1155/2021/8840723

Chalangar, E., Nur, O., Willander, M., Gustafsson, A. & Pettersson, H. 2021. Synthesis of vertically aligned ZnO nanorods using sol-gel seeding and colloidal lithography patterning. Nanoscale Research Letters 16: 46. https://doi.org/10.1186/s11671-021-03500-7

Chaudhary, S., Ahmad Umar, Bhasin, K.K. & Baskoutas, S. 2018. Chemical sensing applications of ZnO nanomaterials. Materials 11(2): 287.

Cho, G., Azzouzi, S., Zucchi, G. & Lebental, B. 2022. Electrical and electrochemical sensors based on carbon nanotubes for the monitoring of chemicals in water - A review. Sensors 22(1): 218. https://doi.org/10.3390/s22010218

Danielson, E., Dhamodharan, V., Porkovich, A., Kumar, P., Jian, N., Ziadi, Z., Grammatikopoulos, P., Sontakke, V.A., Yokobayashi, Y. & Sowwan, M. 2019. Gas-phase synthesis for label-free biosensors: Zinc-oxide nanowires functionalized with gold nanoparticles. Scientific Reports 9: 17370. https://doi.org/10.1038/s41598-019-53960-2

Feliciano-Ramos, I., Ortiz-Quiles, E.O., Cunci, L., Díaz-Cartagena, D.C., Resto, O. & Cabrera, C.R. 2016. Unsupported palladium nanoparticles for ethanol cyclic voltammetric sensing in alkaline media. Journal of Solid State Electrochemistry 20(4): 1011-1017.

Fong, J.K., Pena, J.K., Xue, Z.L., Alam, M.M., Sampathkumaran, U. & Goswami, K. 2015. Optical sensors for the detection of trace chloroform. Analytical Chemistry 87(3): 1569-1574.

Galdámez-Martinez, A., Santana, G., Güell, F., Martínez-Alanis, P.R. & Dutt, A. 2020. Photoluminescence of Zno nanowires: A review. Nanomaterials 10(5): 857. https://doi.org/10.3390/nano10050857

Gawenda, T. 2021. Production methods for regular aggregates and innovative developments in Poland. Minerals 11(12): 1429. https://doi.org/10.3390/min11121429

Gomez-Flores, A., Bradford, S.A., Wu, L. & Kim, H. 2019. Interaction energies for hollow and solid cylinders: Role of aspect ratio and particle orientation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 580(June): 123781. https://doi.org/10.1016/j.colsurfa.2019.123781

González-Meza, O.A., Larios-Durán, E.R., Gutiérrez-Becerra, A., Casillas, N., Escalante, J.I. & Bárcena-Soto, M. 2019. Development of a Randles-Ševčík-like equation to predict the peak current of cyclic voltammetry for solid metal hexacyanoferrates. Journal of Solid State Electrochemistry 23(11): 3123-3133. https://doi.org/10.1007/s10008-019-04410-6

Grau, J., Azorín, C., Benedé, J.L., Chisvert, A. & Salvador, A. 2022. Use of green alternative solvents in dispersive liquid-liquid microextraction: A review. Journal of Separation Science 45(1): 210-222. https://doi.org/10.1002/jssc.202100609

Hamid, H.A., Lockman, Z., Hattori, T. & Abdul, K. 2019. Sensitive and selective chloroform sensor using ­ Fe2O3 nanoparticle ‑ Decorated ZnO nanorods in an aqueous solution. Journal of Materials Science: Materials in Electronics 30: 18990-19000. https://doi.org/10.1007/s10854-019-02256-2

Hamid, H.A., Lockman, Z., Mohamad Nor, N., Zakaria, N.D. & Abdul Razak, K. 2021. Sensitive detection of Pb ions by square wave anodic stripping voltammetry by using iron oxide nanoparticles decorated zinc oxide nanorods modified electrode. Materials Chemistry and Physics 273(June): 125148. https://doi.org/10.1016/j.matchemphys.2021.125148

Khan, I., Saeed, K. & Khan, I. 2017. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 1: 1-25. http://dx.doi.org/10.1016/j.arabjc.2017.05.011

Lagauche, M., Larmier, K., Jolimaitre, E., Barthelet, K., Chizallet, C., Favergeon, L. & Pijolat, M. 2017. Thermodynamic characterization of the hydroxyl group on the γ-alumina surface by the energy distribution function. Journal of Physical Chemistry C 121(31): 16770-16782. https://doi.org/10.1021/acs.jpcc.7b02498

Li, X., Chen, X., Yi, Z., Zhou, Z., Tang, Y. & Yi, Y. 2019. Fabriction of ZnO Nanorods with strong UV absorption and different hydrophobicity on foamed nickel under different hydrothermal conditions. Micromachines 10(3): 164.

Mehdi B., Amiri, A., Karimabadi, F., Di Masi, S., Maleki, B., Adibian, F., Pourali, A.R. & Malitesta, C. 2021. Magnetic MWCNTs-dendrimer: A potential modifier for electrochemical evaluation of As (III) ions in real water samples. Journal of Electroanalytical Chemistry 888(9): 115059. https://doi.org/10.1021/acsanm.0c01419

Mirzaei, A., Leonardi, S.G. & Neri, G. 2016. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceramics International 42: 15119-15141.

Mohamad Ahad, Zulayka, I., Harun, S.W., Gan, S.N. & Phang, S.W. 2018. Polyaniline (PAni) optical sensor in chloroform detection. Sensors and Actuators, B: Chemical 261: 97-105. https://doi.org/10.1016/j.snb.2018.01.082

Nguyen, T.H.P., Tonezzer, M., Le Dang, T.T., Vu, Q.K., Tran, Q.H., Nguyen, D.H. & Nguyen, V.H. 2019. Stable electrochemical measurements of platinum screen-printed electrodes modified with vertical ZnO nanorods for bacterial detection. Journal of Nanomaterials 2019: 2341268. https://doi.org/10.1155/2019/2341268

Nie, M.X., Li, X.Z., Liu, S.R. & Guo, Y. 2015. ZnO/CuO/Al2O3 composites for chloroform detection. Sensors and Actuators, B: Chemical 210: 211-217.

Nurhaswani Alias, Siti Azlina Rosli, Nurliyana Abu Hasan Sazalli, Haslinda Abdul Hamid, Sarasijah Arivalakan, Siti Nur Hanisah Umar, Beh Khi Khim, Bibi Nadia Taib, Yeoh Kar Keat, Khairunisak Abdul Razak, Yeoh Fei Yee, Zuhailawati Hussain, Elmi Abu Bakar, Noor Fazreena Kamaruddin, Asrulnizam Abd. Manaf, Naoki Uchiyama, Tan Wai Kian, Atsunori Matsuda, Go Kawamura, Kazuaki Sawada, Akihiko Matsumoto & Zainovia Lockman. 2020. Metal oxide for heavy metal detection and removal. In Metal Oxide Powder Technologies: Fundamental, Processing Methods and Application. pp. 299-332. https://doi.org/10.1016/b978-0-12-817505-7.00015-4

Peng, Z., Feng, X., Tong, B., Chen, D., Shi, J., Zhi, J. & Dong, Y. 2016. The selective detection of chloroform using an organic molecule with aggregation-induced emission properties in the solid state as a fluorescent sensor. Sensors and Actuators, B: Chemical 232: 264-268. https://doi.org/10.1016/j.snb.2016.03.136

Prasadam, V.P., Huerta Flores, A.M., Audinot, J.N. & Bahlawane, N. 2022. CNT-ZnO core-shell photoanodes for photoelectrochemical water splitting. Coatings 12(1). https://doi.org/10.3390/coatings12010047

Rahman, M.M. 2017. RSC advances for environmental safety. RSC Advances 7: 22627-22639.

Sheng, K., Lu, H., Sun, A., Wang, Y., Liu, Y., Chen, F., Bian, W., Li, Y., Kuang, R. & Sun, D. 2019. A naked-eye colorimetric sensor for chloroform. Chinese Chemical Letters 30(4): 895-898. https://doi.org/10.1016/j.cclet.2019.01.027

Teimoori, F., Khojier, K. & Dehnavi, N.Z. 2017. Investigation of sensitivity and selectivity of ZnO thin film to volatile organic compounds. Journal of Theoretical and Applied Physics 11(2): 157-163. https://doi.org/10.1007/s40094-017-0253-0

Veerapandian, S.K.P., Leys, C., De Geyter, N. & Rin Moren. 2017. Abatement of VOCs using packed bed non-thermal plasma reactors: A review. Catalysts 7(4): 1-33.

Wu, Q., Ma, H., Ling, K., Gan, N., Cheng, Z., Gu, L., Cai, S., An, Z., Shi, H. & Huang, W. 2018. Reversible ultralong organic phosphorescence for visual and selective chloroform detection. ACS Applied Materials and Interfaces 10(39): 33730-33736. https://doi.org/10.1021/acsami.8b13713

Yan, H., Tian, X., Sun, J. & Ma, F. 2015. Enhanced sensing properties of CuO nanosheets for volatile organic compounds detection. Journal of Materials Science: Materials in Electronics 26(1): 280-287. https://doi.org/10.1007/s10854-014-2396-y

Yaqub, G., Khan, U., Sadiq, Z. & Akram, H. 2017. A rapid and sensitive method for determination of chlorinated by-products. J. Chil. Chem. Soc 2: 2-5.

Yi, G., Li, X., Yuan, Y. & Zhang, Y. 2019. Redox active Zn/ZnO duo generating superoxide (O2) and H2O2 under all conditions for environmental sanitation. Environmental Science: Nano 6(1): 68-74. https://doi.org/10.1039/c8en01095a

Zhang, T., Xing, Y., Wang, G. & He, S. 2021. High sensitivity continuous monitoring of chloroform gas by using wavelength modulation photoacoustic spectroscopy in the near-infrared range. Applied Sciences (Switzerland) 11(15): 6992. https://doi.org/10.3390/app11156992.

 

*Corresponding author; email: hasli8366@uitm.edu.my

 

 

 

 

 

 

previous