Sains Malaysiana 52(4)(2023): 1203-1215

http://doi.org/10.17576/jsm-2023-5204-13

 

Molecular Docking Analysis on the Designed Benzimidazole Derivatives as EGFR Inhibitors: Comparison between EGFR Wild-Type (EGFRWT) and T790M Mutant

(Analisis Dok Molekul pada Terbitan Benzimidazol Direka sebagai Perencat EGFR: Perbandingan antara Jenis Liar EGFR (EGFRWT) dan Mutan T790M)

 

NURUL AWANI SYAZZIRA JALIL1 & SHAFIDA ABD HAMID1,2,*

 

1Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200 Bandar Indera Mahkota, Kuantan, Pahang Darul Makmur, Malaysia

2SYNTOF, Kulliyyah of Science, International Islamic University Malaysia, 25200 Bandar Indera Mahkota, Kuantan, Pahang Darul Makmur, Malaysia

 

Received: 15 August 2022/Accepted: 26 February 2023

 

Abstract

The non-small cell lung (NSCL) and colorectal cancers are frequently linked with the oncogenic activation of the epidermal growth factor receptor (EGFR), a member of the receptor tyrosine kinase (RTK) family. Current tyrosine kinase inhibitors (TKIs) are susceptible to drug resistance mutations and induce cytotoxicity effects on normal EGFRs. The isosteric nature of benzimidazole with purine renders its great potential to imitate the binding mode of the purine-based ATP and prevents its contact with the EGFR active sites. Here, we report the molecular docking of 50 designed benzimidazole derivatives, as well as Gefitinib and ATP, to analyse and compare their binding modes at EGFRwt and T790M active sites. The design of the ligands is based on our previous study, in which we proposed to evaluate keto- and amino-benzimidazoles, attached to a double bond linker and a phenyl group having electron donating and electron withdrawing groups attached at various positions. Docking simulations showed that keto-benzimidazoles dominated the top ten highest binding affinities in both EGFR-ligand complexes. The presence of sulfonyl substituents contributed to more stable complexes compared to others with binding energies of -8.1 (7c) and -7.8 (11c) kcal/mol in EGFRwt, and -8.3 (7d) and -8.4 (1c) kcal/mol for T790M mutant. The substituent effects on the benzimidazole contributed not only to the hydrogen bonding and hydrophobic interaction, but also to the often-disregarded Van der Waals forces that are responsible for shape complementarity of the benzimidazoles with the EGFR binding pocket.

 

Keywords: Benzimidazole; EGFR; molecular docking; tyrosine kinase inhibitor; T790M

 

Abstrak

Sel paru-paru bukan kecil (NSCL) dan kanser kolorektum sering dikaitkan dengan pengaktifan onkogenik reseptor faktor pertumbuhan epidermis (EGFR), ahli keluarga reseptor tirosin kinase (RTK). Perencat tirosin kinase (TKI) masa kini terdedah kepada mutasi rintangan dadah dan mendorong kesan kesitotoksikan pada EGFR normal. Sifat isosterik benzimidazol dengan purin menyebabkan ia berpotensi tinggi untuk meniru mod pengikatan ATP berasaskan purin dan menghalang sentuhannya dengan tapak aktif EGFR. Di sini, kami melaporkan dok molekul bagi 50 terbitan benzimidazol yang direka berserta Gefitinib dan ATP untuk menganalisis dan membandingkan mod pengikatan mereka di tapak aktif EGFRwt dan T790M. Reka bentuk ligan adalah berdasarkan kajian terdahulu kami dan kami mencadangkan untuk menilai benzimidazol-keto dan amino- yang terikat pada penghubung ikatan berganda dan kumpulan fenil yang mempunyai kumpulan pendermaan elektron dan penarikan elektron yang dilampirkan pada pelbagai kedudukan. Simulasi dok mendedahkan bahawa benzimidazol-keto menguasai sepuluh pertalian pengikatan tertinggi dalam kedua-dua kompleks ligan EGFR. Kehadiran penukarganti sulfonil menyumbang kompleks yang lebih stabil berbanding yang lain; dengan tenaga pengikatan -8.1 (7c) dan -7.8 (11c) kcal/mol dalam EGFRwt dan -8.3 (7d) dan -8.4 (1c) kcal/mol untuk mutan T790M. Kesan penukarganti pada benzimidazol menyumbang bukan sahaja kepada ikatan hidrogen dan interaksi hidrofobik, tetapi juga kepada daya Van der Waals yang sering diabaikan, yang bertanggungjawab untuk saling melengkapi bentuk benzimidazol dengan poket pengikat EGFR.

 

Kata kunci: Benzimidazol; dok molekul; EGFR; perencat tirosin kinase; T790M

 

REFERENCES

Abdullah, M.N., Ali, Y. & Hamid, S.A. 2021. Insights into the structure and drug design of benzimidazole derivatives targeting the epidermal growth factor receptor (EGFR). Chemical Biology & Drug Design 100(6): 921-934.

Akhtar, M.J., Khan, A.A., Ali, Z., Dewangan, R.P., Rafi, M., Hassan, M.Q., Akhtar, M.S., Siddiqui, A.A., Partap, S., Pasha, S. & Yar, M.S. 2018. Synthesis of stable benzimidazole derivatives bearing pyrazole as anticancer and EGFR receptor inhibitors. Bioorganic Chemistry 78: 158-169.

Akhtar, M.J., Siddiqui, A.A., Khan, A.A., Ali, Z., Dewangan, R.P., Pasha, S. & Yar, M.S. 2017. Design, synthesis, docking and QSAR study of substituted benzimidazole linked oxadiazole as cytotoxic agents, EGFR and erbB2 receptor inhibitors. European Journal of Medicinal Chemistry 126: 853-869.

Amelia, T., Kartasasmita, R.E., Ohwada, T. & Tjahjono, D.H. 2022. Structural insight and development of EGFR tyrosine kinase inhibitors. Molecules 27(3): 819.

Bansal, Y. & Silakari, O. 2012. The therapeutic journey of benzimidazoles: A review. Bioorganic & Medicinal Chemistry 20(21): 6208-6236.

Celik, I., Ayhan-Kılcıgil, G., Guven, B., Kara, Z., Gurkan-Alp, A.S., Karayel, A. & Onay- Besikci, A. 2019. Design, synthesis and docking studies of benzimidazole derivatives as potential EGFR inhibitors. European Journal of Medicinal Chemistry 173: 240-249.

Çevik, U.A., Celik, I., Mella, J., Mellado, M., Özkay, Y. & Kaplancikli, A.Z. 2022. Design, synthesis, and molecular modeling studies of a novel benzimidazole as an aromatase inhibitor. ACS Omega 7(18): 16152-16163.

Grabe, T., Lategahn, J. & Rauh, D. 2018. C797S resistance: The undruggable EGFR mutation in non-small cell lung cancer? ACS Medicinal Chemistry Letters 9(8): 779-782.

Hsu, K-C., Chen, Y-F. & Yang, J-M. 2008. Binding affinity analysis of protein-ligand complexes. 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. pp. 167-171.

Jiang, T., Su, C., Ren, S., Cappuzzo, F., Rocco, G., Palmer, J.D., van Zandwijk, N., Blackhall, F., Le, X., Pennell, N.A. & Zhou, C. 2018. A consensus on the role of Osimertinib in non-small cell lung cancer from the AME Lung Cancer Collaborative Group. Journal of Thoracic Disease 10(7): 3909-3921.

Karadayi, F.Z., Yaman, M., Kisla, M.M., Keskus, A.G., Konu, O. & Ates-Alagoz, Z. 2020. Design, synthesis and anticancer/antiestrogenic activities of novel indole-benzimidazoles. Bioorganic Chemistry 100: 103929.

Lee, Y., Kim, T.M., Kim, D.W., Kim, S., Kim, M., Keam, B., Ku, J.L. & Heo, D.S. 2019. Preclinical modelling of Osimertinib for NSCLC with EGFR Exon 20 insertion mutations. Journal of Thoracic Disease 14(9): 1556-1566.

Lelais, G., Epple, R., Marsilje, T.H., Long, Y.O., McNeill, M., Chen, B., Lu, W., Anumolu, J., Badiger, S., Bursulaya, B., DiDonato, M., Fong, R., Juarez, J., Li, J., Manuia, M., Mason, D.E., Gordon, P., Groessl, T., Johnson, K., Jia, Y., Kasibhatla, S., Li, C., Isbell, J., Spraggon, G., Bender, S. & Michellys, P-Y. 2016. Discovery of (R,E)-N-(7-Chloro-1-(1-[4-(dimethylamino)but-2-enoyl]azepan-3-yl)-1H-benzo[d]imidazol-2-yl)-2-methylisonicotinamide (EGF816), a novel, potent, and WT sparing covalent inhibitor of oncogenic (L858R, ex19del) and resistant (T790M) EGFR mutants for the treatment of EGFR mutant non-small-cell lung cancers. Journal of Medicinal Chemistry 59(14): 6671-6689.

Labib, M.B., Philoppes, J.N., Lamie, P.F. & Ahmed, E.R. 2018. Azole-hydrazone derivatives: Design, synthesis, in vitro biological evaluation, dual EGFR/HER2 inhibitory activity, cell cycle analysis and molecular docking study as anticancer agents. Bioorganic Chemistry 76: 67-80.

Leonetti, A., Sharma, S., Minari, R., Perego, P., Giovannetti, E. & Tiseo, M. 2019. Resistance mechanisms to Osimertinib in EGFR-mutated non-small cell lung cancer. British Journal of Cancer 121: 725-737.

Liégeois, J-F., Lespagnard, M., Salas, E.M., Mangin, F., Scuvée-Moreau, J. & Dilly, S. 2014. Enhancing a CH−π interaction to increase the affinity for 5-HT1A receptors. ACS Medicinal Chemistry Letters 5(4): 358-362.

López-Camacho, E., García-Godoy, M.J., García-Nieto, J., Nebro, A.J. & Aldana-Montes, J.F. 2016. A new multi-objective approach for molecular docking based on RMSD and binding energy. In Algorithms for Computational Biology. Lecture Notes in Computer Science, vol 9702, edited by Botón-Fernández, M., Martín-Vide, C., Santander-Jiménez, S. & Vega-Rodríguez, M. Springer, Cham.

Mathur, G., Nain, S. & Sharma, P.K. 2015. Cancer: An overview. Academic Journal of Cancer Research 8(1): 1-9.

Mostafa, A.S., Gomaa, R.M. & Elmorsy, M.A. 2019. Design and synthesis of 2-phenyl benzimidazole derivatives as VEGFR-2 inhibitors with anti-breast cancer activity. Chemical Biology Drug Design 93(4): 454-463.

Neel, A.J., Hilton, M.J., Sigman, M.S & Toste, F.D. 2017 Exploiting non-covalent π interactions for catalyst design. Nature 543(7647): 637-646.

Nussbaumer, S., Bonnabry, P., Veuthey, J.L. & Fleury-Souverain, S. 2011. Analysis of anticancer drugs: A review. Talanta 85(5): 2265-2289.

Rebucci, M. & Michiels, C. 2013. Molecular aspects of cancer cell resistance to chemotherapy. Biochemical Pharmacology 85(9): 1219-1226.

Shrivastava, N., Naim, M.J., Alam, M.J., Nawaz, F., Ahmed, S. & Alam, O. 2017. Benzimidazole scaffold as anticancer agent: Synthetic approaches and structure-activity relationship. Archiv. Der. Pharmazie. 350: e201700040.

Song, C. & Yang, X. 2022. Osimertinib-centered therapy against uncommon epidermal growth factor receptor-mutated non-small-cell lung cancer-A mini review. Frontiers in Oncology 12: 834585.

Srour, A.M., Ahmed, N.S., Abd El-Karim, S.S., Anwar, M.M. & El-Hallouty, S.M. 2020. Design, synthesis, biological evaluation, QSAR analysis and molecular modelling of new thiazol-benzimidazoles as EGFR inhibitors. Bioorganic Medicinal Chemistry 28(18): 115657.

Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. & Bray, F. 2021. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer Journal for Clinicians 71(3): 209-249.

The UniProt Consortium. 2019. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research 47: D506-D515.

Thomas, R. & Weihua, Z. 2019. Rethink of EGFR in cancer with its kinase independent function on board. Frontiers in Oncology 9: 800.

Troiani, T., Napolitano, S., Corte, C.M.D., Martini, G., Martinelli, E., Morgillo, F. & Ciardiello, F. 2016. Therapeutic value of EGFR inhibition in CRC and NSCLC: 15 years of clinical evidence. ESMO Open 1(5): e000088.

Tsai, C-J., Norel, R., Wolfson, H.J., Maizel, J.V. & Nussinov, R. 2001. Protein-ligand interactions: Energetic contributions and shape complementarity. Encyclopedia of Life Sciences. pp. 1-8.

Vyse, S. & Huang, P.H. 2019. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduction and Targeted Therapy 4: 5.

Wheeler, S.E. 2012. Understanding substituent effects in noncovalent interactions involving aromatic rings. Accounts of Chemical Research 46(4): 1029-1038.

Xie, H., Lin, L., Tong, L., Jiang, Y., Zheng, M., Chen, Z., Jiang, X., Zhang, X., Ren, X., Qu, W., Yang, Y., Wan, H., Chen, Y., Zuo, J., Jiang, H., Geng, M. & Ding, J. 2011 AST1306, A novel irreversible inhibitor of the epidermal growth factor receptor 1 and 2, exhibits antitumor activity both in vitro and in vivo. PLoS ONE 6(7): e21487.

Yun, C-H., Mengwasser, K.E., Toms, A.V., Woo, M.S., Greulich, H., Wong, K-K., Meyerson, M. & Eck, M.J. 2008. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. PNAS 105(6): 2070-2075.

Zandi, R., Larsen, A.B., Andersen, P., Stockhausen, M-T. & Poulsen, H.S. 2007. Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell Signal 19(10): 2013-2023.

 

*Corresponding author; email: shafida@iium.edu.my

 

 

 

 

 

 

previous