Sains Malaysiana 52(4)(2023):
1203-1215
http://doi.org/10.17576/jsm-2023-5204-13
Molecular Docking
Analysis on the Designed Benzimidazole Derivatives as EGFR Inhibitors:
Comparison between EGFR Wild-Type (EGFRWT) and T790M Mutant
(Analisis Dok Molekul
pada Terbitan Benzimidazol Direka sebagai Perencat EGFR: Perbandingan antara
Jenis Liar EGFR (EGFRWT) dan Mutan T790M)
NURUL AWANI SYAZZIRA JALIL1 & SHAFIDA
ABD HAMID1,2,*
1Department
of Chemistry, Kulliyyah of Science, International Islamic University Malaysia,
25200 Bandar Indera Mahkota, Kuantan, Pahang Darul Makmur, Malaysia
2SYNTOF,
Kulliyyah of Science, International Islamic University Malaysia, 25200 Bandar
Indera Mahkota, Kuantan, Pahang Darul Makmur, Malaysia
Received: 15 August 2022/Accepted: 26 February 2023
Abstract
The non-small cell lung (NSCL)
and colorectal cancers are frequently linked with the oncogenic activation of
the epidermal growth factor receptor (EGFR), a member of the receptor tyrosine
kinase (RTK) family. Current tyrosine kinase inhibitors (TKIs) are susceptible
to drug resistance mutations and induce cytotoxicity effects on normal EGFRs.
The isosteric nature of benzimidazole with purine renders its great potential
to imitate the binding mode of the purine-based ATP and prevents its contact
with the EGFR active sites. Here, we report the molecular docking of 50
designed benzimidazole derivatives, as well as Gefitinib and ATP, to analyse and
compare their binding modes at EGFRwt and T790M active sites. The
design of the ligands is based on our previous study, in which we proposed to
evaluate keto- and amino-benzimidazoles, attached to a double bond linker and a
phenyl group having electron donating and electron withdrawing groups attached
at various positions. Docking simulations showed that keto-benzimidazoles
dominated the top ten highest binding affinities in both EGFR-ligand complexes.
The presence of sulfonyl substituents contributed to more stable complexes
compared to others with binding energies of -8.1 (7c) and -7.8 (11c)
kcal/mol in EGFRwt, and -8.3 (7d) and -8.4 (1c)
kcal/mol for T790M mutant. The substituent effects on the benzimidazole
contributed not only to the hydrogen bonding and hydrophobic interaction, but
also to the often-disregarded Van der Waals forces that are responsible for
shape complementarity of the benzimidazoles with the EGFR binding pocket.
Keywords: Benzimidazole; EGFR; molecular docking;
tyrosine kinase inhibitor; T790M
Abstrak
Sel paru-paru bukan kecil (NSCL) dan kanser kolorektum
sering dikaitkan dengan pengaktifan onkogenik reseptor faktor pertumbuhan
epidermis (EGFR), ahli keluarga reseptor tirosin kinase (RTK). Perencat tirosin
kinase (TKI) masa kini terdedah kepada mutasi rintangan dadah dan mendorong
kesan kesitotoksikan pada EGFR normal. Sifat isosterik benzimidazol dengan
purin menyebabkan ia berpotensi tinggi untuk meniru mod pengikatan ATP
berasaskan purin dan menghalang sentuhannya dengan tapak aktif EGFR. Di sini,
kami melaporkan dok molekul bagi 50 terbitan benzimidazol yang direka berserta
Gefitinib dan ATP untuk menganalisis dan membandingkan mod pengikatan mereka di
tapak aktif EGFRwt dan T790M. Reka bentuk ligan adalah berdasarkan kajian
terdahulu kami dan kami mencadangkan untuk menilai benzimidazol-keto dan amino-
yang terikat pada penghubung ikatan berganda dan kumpulan fenil yang mempunyai
kumpulan pendermaan elektron dan penarikan elektron yang dilampirkan pada
pelbagai kedudukan. Simulasi dok mendedahkan bahawa benzimidazol-keto menguasai
sepuluh pertalian pengikatan tertinggi dalam kedua-dua kompleks ligan EGFR. Kehadiran
penukarganti sulfonil menyumbang kompleks yang lebih stabil berbanding yang
lain; dengan tenaga pengikatan -8.1 (7c) dan -7.8 (11c) kcal/mol
dalam EGFRwt dan -8.3 (7d) dan -8.4 (1c) kcal/mol untuk mutan
T790M. Kesan penukarganti pada benzimidazol menyumbang bukan sahaja kepada
ikatan hidrogen dan interaksi hidrofobik, tetapi juga kepada daya Van der Waals
yang sering diabaikan, yang bertanggungjawab untuk saling melengkapi bentuk
benzimidazol dengan poket pengikat EGFR.
Kata kunci: Benzimidazol; dok molekul; EGFR;
perencat tirosin kinase; T790M
REFERENCES
Abdullah, M.N., Ali, Y. & Hamid, S.A.
2021. Insights into the structure and drug design of benzimidazole derivatives
targeting the epidermal growth factor receptor (EGFR). Chemical Biology
& Drug Design 100(6): 921-934.
Akhtar, M.J., Khan, A.A., Ali, Z.,
Dewangan, R.P., Rafi, M., Hassan, M.Q., Akhtar, M.S., Siddiqui, A.A., Partap,
S., Pasha, S. & Yar, M.S. 2018. Synthesis of stable benzimidazole
derivatives bearing pyrazole as anticancer and EGFR receptor inhibitors. Bioorganic
Chemistry 78: 158-169.
Akhtar, M.J., Siddiqui, A.A., Khan, A.A.,
Ali, Z., Dewangan, R.P., Pasha, S. & Yar, M.S. 2017. Design, synthesis,
docking and QSAR study of substituted benzimidazole linked oxadiazole as
cytotoxic agents, EGFR and erbB2 receptor inhibitors. European Journal of
Medicinal Chemistry 126: 853-869.
Amelia, T., Kartasasmita, R.E., Ohwada, T.
& Tjahjono, D.H. 2022. Structural insight and development of EGFR tyrosine
kinase inhibitors. Molecules 27(3): 819.
Bansal, Y. & Silakari, O.
2012. The therapeutic journey of benzimidazoles: A review. Bioorganic &
Medicinal Chemistry 20(21): 6208-6236.
Celik, I., Ayhan-Kılcıgil, G.,
Guven, B., Kara, Z., Gurkan-Alp, A.S., Karayel, A. & Onay- Besikci, A.
2019. Design, synthesis and docking studies of benzimidazole derivatives as
potential EGFR inhibitors. European Journal of Medicinal Chemistry 173:
240-249.
Çevik, U.A., Celik, I., Mella, J., Mellado,
M., Özkay, Y. & Kaplancikli, A.Z. 2022. Design, synthesis, and molecular
modeling studies of a novel benzimidazole as an aromatase inhibitor. ACS
Omega 7(18): 16152-16163.
Grabe, T.,
Lategahn, J. & Rauh, D. 2018. C797S resistance: The undruggable EGFR
mutation in non-small cell lung cancer? ACS Medicinal Chemistry Letters 9(8): 779-782.
Hsu, K-C., Chen, Y-F. & Yang, J-M.
2008. Binding affinity analysis of protein-ligand complexes. 2008 2nd
International Conference on Bioinformatics and Biomedical Engineering. pp.
167-171.
Jiang, T., Su,
C., Ren, S., Cappuzzo, F., Rocco, G., Palmer, J.D., van Zandwijk, N.,
Blackhall, F., Le, X., Pennell, N.A. & Zhou, C. 2018. A consensus on the
role of Osimertinib in non-small cell lung cancer from the AME Lung Cancer
Collaborative Group. Journal of Thoracic Disease 10(7): 3909-3921.
Karadayi, F.Z., Yaman, M., Kisla, M.M.,
Keskus, A.G., Konu, O. & Ates-Alagoz, Z. 2020. Design, synthesis and
anticancer/antiestrogenic activities of novel indole-benzimidazoles. Bioorganic
Chemistry 100: 103929.
Lee, Y., Kim,
T.M., Kim, D.W., Kim, S., Kim, M., Keam, B., Ku, J.L. & Heo, D.S. 2019.
Preclinical modelling of Osimertinib for NSCLC with EGFR Exon 20 insertion
mutations. Journal of Thoracic Disease 14(9): 1556-1566.
Lelais, G., Epple, R.,
Marsilje, T.H., Long, Y.O., McNeill, M., Chen, B., Lu, W., Anumolu, J.,
Badiger, S., Bursulaya, B., DiDonato, M., Fong, R., Juarez, J., Li, J., Manuia,
M., Mason, D.E., Gordon, P., Groessl, T., Johnson, K., Jia, Y., Kasibhatla, S.,
Li, C., Isbell, J., Spraggon, G., Bender, S. & Michellys, P-Y. 2016.
Discovery of (R,E)-N-(7-Chloro-1-(1-[4-(dimethylamino)but-2-enoyl]azepan-3-yl)-1H-benzo[d]imidazol-2-yl)-2-methylisonicotinamide
(EGF816), a novel, potent, and WT sparing covalent inhibitor of oncogenic
(L858R, ex19del) and resistant (T790M) EGFR mutants for the treatment of EGFR
mutant non-small-cell lung cancers. Journal of Medicinal Chemistry 59(14): 6671-6689.
Labib, M.B., Philoppes, J.N., Lamie, P.F.
& Ahmed, E.R. 2018. Azole-hydrazone derivatives: Design, synthesis, in
vitro biological evaluation, dual EGFR/HER2 inhibitory activity, cell cycle
analysis and molecular docking study as anticancer agents. Bioorganic
Chemistry 76: 67-80.
Leonetti,
A., Sharma, S., Minari, R., Perego, P., Giovannetti, E. & Tiseo, M. 2019.
Resistance mechanisms to Osimertinib in EGFR-mutated non-small cell lung
cancer. British Journal of Cancer 121: 725-737.
Liégeois, J-F., Lespagnard, M., Salas,
E.M., Mangin, F., Scuvée-Moreau, J. & Dilly, S. 2014. Enhancing a
CH−π interaction to increase the affinity for 5-HT1A receptors. ACS
Medicinal Chemistry Letters 5(4): 358-362.
López-Camacho, E.,
García-Godoy, M.J., García-Nieto, J., Nebro, A.J. & Aldana-Montes, J.F.
2016. A new multi-objective approach for molecular docking based on RMSD and
binding energy. In Algorithms
for Computational Biology. Lecture Notes in Computer Science, vol 9702,
edited by Botón-Fernández, M., Martín-Vide, C., Santander-Jiménez, S. &
Vega-Rodríguez, M. Springer, Cham.
Mathur,
G., Nain, S. & Sharma, P.K. 2015. Cancer: An overview. Academic Journal
of Cancer Research 8(1): 1-9.
Mostafa, A.S., Gomaa, R.M. & Elmorsy,
M.A. 2019. Design and synthesis of 2-phenyl benzimidazole derivatives as
VEGFR-2 inhibitors with anti-breast cancer activity. Chemical Biology Drug
Design 93(4): 454-463.
Neel,
A.J., Hilton, M.J., Sigman, M.S & Toste, F.D. 2017 Exploiting non-covalent
π interactions for catalyst design. Nature 543(7647): 637-646.
Nussbaumer,
S., Bonnabry, P., Veuthey, J.L. & Fleury-Souverain, S. 2011. Analysis of
anticancer drugs: A review. Talanta 85(5): 2265-2289.
Rebucci,
M. & Michiels, C. 2013. Molecular aspects of cancer cell resistance to
chemotherapy. Biochemical Pharmacology 85(9): 1219-1226.
Shrivastava, N., Naim, M.J., Alam, M.J.,
Nawaz, F., Ahmed, S. & Alam, O. 2017. Benzimidazole scaffold as anticancer
agent: Synthetic approaches and structure-activity relationship. Archiv.
Der. Pharmazie. 350: e201700040.
Song,
C. & Yang, X. 2022. Osimertinib-centered therapy against uncommon epidermal
growth factor receptor-mutated non-small-cell lung cancer-A mini review. Frontiers
in Oncology 12: 834585.
Srour, A.M., Ahmed, N.S., Abd El-Karim,
S.S., Anwar, M.M. & El-Hallouty, S.M. 2020. Design, synthesis, biological
evaluation, QSAR analysis and molecular modelling of new thiazol-benzimidazoles
as EGFR inhibitors. Bioorganic Medicinal Chemistry 28(18): 115657.
Sung, H., Ferlay, J., Siegel, R.L.,
Laversanne, M., Soerjomataram, I., Jemal, A. & Bray, F. 2021. Global Cancer
Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA: Cancer Journal for Clinicians 71(3):
209-249.
The UniProt Consortium. 2019. UniProt: A
worldwide hub of protein knowledge. Nucleic Acids Research 47:
D506-D515.
Thomas, R. & Weihua, Z. 2019. Rethink
of EGFR in cancer with its kinase independent function on board. Frontiers
in Oncology 9: 800.
Troiani, T., Napolitano, S., Corte, C.M.D.,
Martini, G., Martinelli, E., Morgillo, F. & Ciardiello, F. 2016.
Therapeutic value of EGFR inhibition in CRC and NSCLC: 15 years of clinical
evidence. ESMO Open 1(5): e000088.
Tsai, C-J., Norel, R., Wolfson, H.J.,
Maizel, J.V. & Nussinov, R. 2001. Protein-ligand interactions: Energetic
contributions and shape complementarity. Encyclopedia of Life Sciences. pp. 1-8.
Vyse,
S. & Huang, P.H. 2019. Targeting EGFR exon 20 insertion mutations in
non-small cell lung cancer. Signal Transduction and Targeted Therapy 4:
5.
Wheeler, S.E. 2012.
Understanding substituent effects in noncovalent interactions involving
aromatic rings. Accounts of Chemical Research 46(4): 1029-1038.
Xie, H., Lin, L., Tong, L., Jiang, Y.,
Zheng, M., Chen, Z., Jiang, X., Zhang, X., Ren, X., Qu, W., Yang, Y., Wan, H.,
Chen, Y., Zuo, J., Jiang, H., Geng, M. & Ding, J. 2011 AST1306, A novel
irreversible inhibitor of the epidermal growth factor receptor 1 and 2,
exhibits antitumor activity both in vitro and in vivo. PLoS
ONE 6(7): e21487.
Yun, C-H., Mengwasser, K.E., Toms, A.V.,
Woo, M.S., Greulich, H., Wong, K-K., Meyerson, M. & Eck, M.J. 2008. The
T790M mutation in EGFR kinase causes drug resistance by increasing the affinity
for ATP. PNAS 105(6): 2070-2075.
Zandi, R., Larsen, A.B., Andersen, P.,
Stockhausen, M-T. & Poulsen, H.S. 2007. Mechanisms for oncogenic activation
of the epidermal growth factor receptor. Cell Signal 19(10): 2013-2023.
*Corresponding author; email: shafida@iium.edu.my
|