Sains Malaysiana 52(4)(2023):
1189-1202
http://doi.org/10.17576/jsm-2023-5204-12
Fe/ZSM-5-Catalyzed-Synthesis
of 1,4-Dihydropyridines under Ultrasound Irradiation and Their Antioxidant
Activities
(Fe/ZSM-5-Pemangkin-Sintesis 1,4-Dihidropiridin di
Bawah Sinaran Ultrabunyi dan Aktiviti Antioksidannya)
YAYAN
DWI SUTARNI, BAMBANG PURWONO, EKO SRI KUNARTI & MUHAMMAD IDHAM DARUSSALAM
MARDJAN*
Department of Chemistry, Faculty of Mathematics and
Natural Sciences, Universitas Gadjah Mada, Yogyakarta
55281, Indonesia
Received: 24 July
2022/Accepted: 26 February 2023
Abstract
A
small library of 1,4-dihydropyridines have been synthesized from ethyl
acetoacetate, ammonium acetate and various aldehydes via Hantzsch multicomponent
reaction in the presence of Fe/ZSM-5 catalyst under ultrasound irradiation for
90 min. 1,4-Dihydropyridine derivatives were obtained in 64-86% yields and the
heterogeneous Fe/ZSM-5 catalyst can be employed for four reaction cycles
without losing the catalytic activity. All products were evaluated for their
antioxidant activities using the DPPH method and compound 4g was found
to be an effective antioxidant agent with DPPH activity of 83.5%.
Keywords: Antioxidant assay; Fe/ZSM-5 catalyst;
ultrasound-assisted-multicomponent reaction; 1,4-dihydropyridines
Abstrak
Terbitan 1,4-dihidropiridin telah disintesis daripada etil asetoasetat,
ammonium asetat, dan pelbagai aldehid melalui tindak balas pelbagai komponen Hantzsch yang dimangkinkan oleh Fe/ZSM-5 di bawah penyinaran ultrabunyi selama 90 minit. Terbitan 1,4-dihidropiridin diperoleh dengan hasil 64-86% dan mangkin heterogen Fe/ZSM-5 boleh digunakan untuk 4 kitaran tindak balas tanpa kehilangan aktiviti pemangkin. Semua produk telah dinilai untuk aktiviti antioksidannya menggunakan kaedah DPPH dan sebatian 4g didapati sebagai agen antioksidan yang berkesan dengan aktiviti DPPH sebesar 83.5%.
Kata kunci: Pemangkin Fe/ZSM-5; tindak balas pelbagai komponen dibantu ultrabunyi; ujian antioksidan; 1,4-dihidropiridin
REFERENCES
Abdel-Mohsen, H.T., Conrad, J. & Beifuss, U. 2012. Laccase-catalyzed oxidation of Hantzsch 1,4-dihydropyridines to
pyridines and a new one pot synthesis of pyridines. Green Chem. 14:
2686-2690.
Allahresani, A., Sangani,
M.M. & Nasseri, M.A. 2020. CoFe2O4@SiO2-NH2-CoII NPs catalyzed Hantzsch reaction as an efficient, reusable catalyst for the facile, green, one-pot
synthesis of novel functionalized 1,4-dihydropyridine derivatives. Appl. Organomet. Chem. 34(9): e5759.
Alponti,
L.H.R., Picinini, M., Urquieta-Gonzalez, E.A. & Corrêa, A.G. 2021.
USY-zeolite catalyzed synthesis of 1,4-dihydropyridines under microwave
irradiation: Structure and recycling of the catalyst. J. Mol. Struc. 1227:
1-7.
Arglye,
M.D. & Bartholomew, C.H. 2015. Heterogeneous catalyst deactivation and
regeneration: A review. Catalysts 5: 145-269.
Cahyana, A.H., Liandi, A.R., Safitri, Y. & Yunarti,
R.T. 2020. Synthesis of 1,4-dihydropiridine with aromatic of cinnamaldehyde
compound using NiFe2O4 mnps catalyst and the
activity test as antioxidant. Rasayan J. Chem. 13(3): 1491-1497.
Draye,
M., Estager, J. & Kardos, N. 2019. Organic sonochemistry: Ultrasound in
green organic synthesis. In Activation
Methods Sonochemistry High Pressure, Vol. 2, edited by Goddard, J-P.,
Malacria, M. & Ollivier, C. ISTE Ltd and John Wiley & Sons, Inc. 2019: 1-93.
Ennaert,
T., Aelst, J.V., Dijkmans, J., Clercq, R.D., Schutsyer, W., Dusselier, M.,
Verboekend, D. & Sels, B.F. 2016. Potential and challenges of zeolite
chemistry in the catalytic conversion of biomass. Chem. Soc. Rev. 45:
584-611.
Heusler, A., Fliege, J., Wagener, T. & Glorius, F. 2021.
Substituted dihydropyridine synthesis by dearomatization of pyridines. Angew.
Chem. Int. Ed. 60: 13793-13797.
Hyunh,
T.M., Armbruster, U., Pohl, M.M., Schneider, M., Radnik, J., Hoang, D., Phan,
B.M.Q., Nguyen, D.A. & Martin, A. 2014. Hydrodeoxygenation of phenol as a
model compound for bio-oil on non-noble bimetallic nickel-based catalysts. Chem.
Cat. Chem. 6: 1940-1951.
Ioan,
P., Carosati, E., Micucci, M., Cruciani, G., Broccatelli, F., Zhoroz, B.S.,
Chairini, A. & Budriesi, R. 2011. 1,4-dihydropyridine scaffold in medicinal
chemistry, the story so far and perspective (Part 1): Action in ion channels
and GPCRs. Curr. Med. Chem. 18: 4901-4922.
Jagadale,
M., Kale, D., Salunkhe, R., Rajmane, M. & Rashinkar, G. 2018. Compatibility
of supported ionic liquid phase catalysts under ultrasonication. J. Mol. Liq.
265: 525-535.
Khalafi-Nezad,
A., Panahi, F., Mohammadi, S. & Foroughi, H.O. 2013. A green and efficient
procedure for one-pot synthesis of xanthenes and acridines using silica
boron-sulfuric acid nanoparticles (SBSANs) as a solid Lewis-protic acid. J.
Iran Chem. Soc. 10: 189-200.
Kostyniuk,
A., Key, D. & Mdleleni, M. 2020. 1-hexene
isomerization over bimetallic M-Mo-ZSM-5 (M: Fe, Co, Ni) zeolite catalysts:
Effects of transition metals addition on the catalytic performance. J.
Energy Inst. 93: 552-564.
Kusampally,
U., Dhachapally, N., Kola, R. & Kamatala, C. 2020. Zeolite anchored
Zr-ZSM-5 as an ecofriendly, green, and reusable catalyst in Hantzsch synthesis
of dihydropiridine derivatives. Mater. Chem. Phys. 242: 1-8.
Maleki, A., Eskandarpour, V., Rahimi, J. & Hamidi,
N. 2019. Cellulose
matrix embedded copper decorated magnetic bionanocomposite as a green catalyst
in the synthesis of dihydropyridines and polyhydroquinolines. Carbohydr.
Polym. 208: 251-260.
Manvar,
A.T., Pissurlenkar, R.R.S., Virsodia, V.R., Upadhyay, K.D., Manvar, D.R.,
Mishra, A.K., Acharya, H.D., Parecha, A.R., Dholakia, C.D., Shah, A.K. &
Coutinho, E. 2010. Synthesis, in-vitro antitubercular
activity and 3D-QSAR study of 1,4-dihydropyridines. Mol. Divers. 14:
285-305.
Mohammed,
B.B., Hsini, A., Abdellaoui, Y., Oualid, H.A., Laabd, M., Ouardi, M., Addi, A.,
Yamni, K. & Tijani, N. 2020. Fe-ZSM-5 zeolite for efficient removal of
basic fuchsin dye from aqueous solutions: Synthesis, characterization and
adsoprtion process optimization using BBD-RSM modelling. J. Env. Chem. Eng.
8: 1-11.
Niaz,
H., Kashtoh, H., Khan, J.A.J., Khan, A., Wahab, A., Alam, M.T., Khan, K.M.,
Perveen, S. & Choudhary, I. 2015. Synthesis of
diethyl 4-substituted-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylates as a
new series of inhibitors against yeast α-glucosidase. Eur. J. Med.
Chem. 95: 199-209.
Nikpassand,
M., Mamaghani, M. & Tabatabaeian, K. 2009. An efficient one-pot
three-component synthesis of fused 1,4-dihydropyridines using HY-Zeolite. Molecules 14: 1468-1474.
Niwa, M. & Katada, N. 2013. New method for the
temperature-programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: A review. Chem. Rec. 13: 432-455.
Oskuie, E.F., Azizi, S., Ghasemi, Z., Pirouzmand, M.,
Kojanag, B.N. & Soleymani, J. 2020. Zn/MCM-41-catalyzed
unsymmetrical Hantzsch reaction and the evaluation of optical properties and
anti-cancer activities of the polyhydroquinoline products. Monatsh. Chem. 151:
243-249.
Patil,
M., Karhale, S., Kudale, A., Kumbhar, A., More, S. & Helavi, V. 2019. Green
protocol for the synthesis of 1,8-Dioxo-decahydroacridines by Hantzsch
condensation using citric acid as organocatalyst. Curr. Sci. 116:
936-942.
Patil,
D., Chandam, D., Mulik, A., Patil, P., Jagadale, S., Kant, R., Gupta, V. &
Deshmukh, M. 2014. Novel Brønsted acidic ionic liquid ([CMIM][CF3COO]) prompted
multicomponent Hantzsch reaction for the eco-friendly synthesis of
acridinediones: An efficient and recyclable catalyst. Catal. Lett. 144:
949-958.
Purnamasari,
A.P., Sari, M.E.M., Kusumaningtyas, D.T., Suprapto, S., Hamid, A. &
Prasetyoko, D. 2017. The effect of mesoporous H-ZSM-5
crystallinity as a CaO support on the transesterification of used cooking oil. Bull.
Chem. React. 12: 329-336.
Rahman,
M.M., Abu-Zied, B.M. & Asiri, A.M. 2018. Cu-loaded
ZSM-5 zeolites: An ultra-sensitive phenolic sensor development for
environmental safety. J. Ind. Eng. Chem. 61: 304-313.
Samaunnisa,
A., Mohammed, R., Venkataramana, C.H.S. & Madhavan, V. 2013. Evaluation of
2,6-Dimethyl-N3,N5-diphenyl-1,4-dihydropyridine-3, 5-dicarbohydrazide
derivatives for in vivo anti-inflammatory and analgesic activities. Int.
Res. J. Pharm. 4(9): 156-159.
Sancheti,
S.V. & Gogate, P.R. 2017. A review of engineering aspects of
intensification of chemical synthesis using ultrasound. Ultrason. Sonochem.
36: 527-543.
Sehout,
I., Boulcina, R., Boumoud, B., Boumoud, T. & Debache, A. 2017. Solvent-free
synthesis of polyhydroquinoline and 1,8-dioxodecahydroacridine derivatives via
the Hantzsch reaction catalyzed by a natural organic acid: A green method. Synth.
Comm. 47: 1185-1191.
Srinivasan,
V.V., Pachamutu, M.P. & Maheswari, R. 2015. Lewis acidic mesoporous
Fe-TUD-1 as catalysts for synthesis of Hantzsch 1,4-dihydropyridine
derivatives. J. Porous Mater. 22: 1187-1194.
Tursunov,
O., Kustov, L. & Tilyabaev, Z. 2019. Catalytic activity of H-ZSM-5 and
Cu-HZSM-5 zeolites of medium SiO2/Al2O3 ratio
in conversion of n-Hexane to aromatics. J. Pet. Sci. Eng. 180: 773-778.
Valadi,
K., Gharibi, S., Taheri-Ledari, R. & Maleki, A. 2020. Ultrasound-assisted
synthesis of 1,4-Dihydropyridine derivatives by an efficient volcanic-based
hybrid nanocomposite. Solid State Sci. 101: 1-7.
Vekariya,
H. & Patel, H.D. 2015. Sulfonated polyethylene glycol (PEG-OSO3H)
as a polymer supported biodegradable and recyclable catalyst in green organic
synthesis: Recent advances. Chem. Soc. Rev. 5: 49006-49030.
Wang,
Q., Zhu, M., Zhang, H., Xu, C., Dai, B. & Zhang, J. 2019. Enhanced
catalytic performance of Zr-ZSM-5-supported Zn for the hydration of
acetaldehyde. Catal. Commun. 120: 33-37.
*Corresponding author;
email: idham.darussalam@ugm.ac.id
|