Sains Malaysiana 37(4): 365-371(2008) 

Isolation and Identification of Marine Sulphate-Reducing Bacteria,

Desulfovibrio sp. and Citrobacter freundii from

Pasir Gudang, Malaysia

(Pemencilan Bakteria Penurun-Sulfat Marin, Desulfovibrio sp. dan

Citrobacter freundii dari, Pasir Gudang, Malaysia)

 

 

Fathul Karim Sahrani, Zaharah Ibrahim,  Adibah Yahya & Madzlan Aziz 

School of Environment and Natural Resource Sciences

Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor, Malaysia

 

Recieved:   3 April 2007 /Accepted:   6 December 2007 

 

 

ABSTRACT 

In the attempt to isolate indigenous marine sulphate-reducing bacteria from coastal samples, we obtained some swarm forming bacteria. The isolates were screening using Starkey’s medium and detection of main groups of SRB were carried out using commercially kits (SRB BART kits, Droycon Bioconcepts Inc., Canada). From the growth characteristic, only two isolates were strongly suggested as marine SRB. Based on the 16S rRNA gene sequence analysis these SRB were closely related and could be designated as Desulfovibrio sp. and Citrobacter freundii, with the highest sequence similarity of 98% and 93%, respectively. 

Key words: Sulphate-reducing bacteria; SRB BART kits; 16S rRNA sequence 

 

ABSTRAK

 

Dalam usaha untuk memencilkan bakteria penurun-sulfat (SRB) yang asli dari sampel persekitaran marin, kami memperoleh beberapa kumpulan koloni bakteria. Pemencilan seterusnya disaring menggunakan medium Starkey’s dan pengesanan kumpulan utama sebagai SRB dijalankan menggunakan kit komersial SRB (SRB BART kits, Droycon Bioconcepts Inc., Canada). Daripada pencirian pertumbuhan didapati hanya dua pemencilan dicadangkan sebagai SRB marin.  Analisis urutan 16S rRNA menunjukkan bahawa SRB tersebut sangat rapat dan boleh dipadankan sebagai Desulfovibrio sp. dan Citrobacter freundii dengan kesamaan masing-masing 98% dan 93%.

 

Kata kunci : Bakteria penurun-sulfat; kit BART SRB; urutan 16S rRNA

                                                                                                       

 REFERENCES/RUJUKAN

 

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990. Basic local alignment search tool. Mol. Biol. 215:403-410.

American Water Works Association 1995. Sulfur bacteria. Chapter 3 in AWWA Manual M7, AWWA Denver, Co. 671-676.

Barton, L.L. 1995. Sulfate-reducing bacteria. Biotechnology Handbook. New York: Plenum Press.

Battersby, P.A. 1988. Sulphate-reducing bacteria. In Methods on Aquatic Bacteriology, B. Austin (ed.) New York: John Wiley & Sons.  pp. 269-299.

Beech, I.B., Campbell, S.A. & Walsh, F.C. 1993. Microbiological aspects of the lower water corrosion of carbon steel. In: Proc. 12th Int. Corrosion Congr.  Vol. 56. NACE International, Houston, TX, pp. 3735-3746.

Boyle, A.W., Phelps, C.D. & Young, L.Y. 1999. Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4, 6-tribromophenol. Appl. Environ. Microbiol. 65(3):1133-1140.

Chan, G.F. 2004. Studies on the decolourization mechanism of azo dyes by Citrobacter freundii A1 from the molecular and enzymatic aspects. Ph.D Thesis-Universiti Teknologi Malaysia, Johor.

Cullimore, R. 2000. Practical atlas for bacterial identification. Boca Raton: CRC Press.

Devereux, R. & Stahl, O. 1992. Phylogeny of Sulfate-reducing bacteria. In The sulfate reducing bacteria: contemporary perspectives, postgate, J.R., Odom, J.M. & R. Singleton. Contemporary Bioscience. 289: 131-160.

Devereux, R., Hines, M.E. & Stahl, D.A. 1996. S Cycling: Characterization of natural communities of sulfate-reducing bacteria by 16S rRNA sequence comparisons. Microb. ecol. 32: 283-292.

Fowler, V.J., Widdel, F., Pfennig, N., Woese, C.R. & Stackebrandt, E. 1986. Phylogenetic relationships of sulfate- and sulphur-reducing bacteria eubacteria. Systematic Applied Microbiology 8: 32-41.

Fox, G.E., Pechman, K.R. & Woese, C.R. 1977. Comparative cataloguing of 16S ribosomal ribonucleic acid: Molecular approach to prokaryotic systematics. International Journal of Systematic Bacteriology 27: 44-57.

 Gibson, G.R. 1990. Physiology and ecology of the sulfate reducing bacteria. J. Appl. Bacteriol. 69: 769-797.

Hamilton, W.A. 1994a. Biocorrosion: The action of sulphate-reducing bacteria. In: Biochemistry of Microbial Degradation. Dordrecht: Kluwer Academic

Hamilton, W.A. 1994b. Metabolic interaction and environmental microniches: implications for  the modelling of biofilm process. In: G.G. Geesey, Z. Lewandowsky & H. C. Flemming (eds.) Biofouling and Biocorrosion in Industrial Water Systems, 2nd edition, CRC Press Inc., Boca Raton, FL, pp. 27-36.

Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., & William, S.T. 1994. Bergey’s manual of systematic bacteriology. Baltimore, Maryland : Williams and Wilkins. 235-242.

Herbert, B.N. & Gilbert, P.D. 1984. Isolation and growth sulphate-reducing bacteria. In Microbiology Methods for Environmental Biotechnology: 235-253.

Lab-BART Catalogue manual 2002. Test for SRB sulfate-reducing bacteria. Canada: Droycon Bioconcepts Inc.

Lane, D.J. 1991. 16S/23S rRNA Sequencing, pp 115-176. In Stackebrandt, E. and Goodfellow, M. (eds) Nucleic Acid Techniques in Bacterial Systematics. New York:  John Wiley & Sons.

Nada, T., Baba, H.,  Kawamura, K., Ohkura, T.,  Torii, K. & Ohta, M. 2004. A small outbreak of third generation cephem-resistant Citrobacter freundii infection on a surgical ward. Jpn. J. Infect. Dis. 57:181-182.

Neria-Gonzalez, I., Wang, E. T., Ramirez, F., Romero, J.M. & Hernandez-Rodriquez, C. 2006. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe 32: 213-228.

Odom, J.M. 1990.  Industrial and environmental concerns with sulphate-reducing bacteria. ASM News. 56: 473-476.

Odom, J.M. & Singleton, R. 1992. The sulfate-reducing bacteria: Contemporary Perspectives. New York: Springer-Verlag.

Okabe, S., Nielsen, P.H. Jones, W.I. & Characklis, W.G. 1995. Sulfide product inhibition of desulfovibrio desulfuricans in batch and continuous cultures. Wat. Res. 29: 175-187.

Osawa, R. & Walsh, T.P. 1993.  Visual Reading Method for Detection of Bacterial Tennase. Appl. Environ. Microbiol. 59(4): 1251-125

Pace, B. & Campbell, L.L. 1971. Homology of the ribosomal ribonucleic acid of Desulfovibrio species with  Desulfovibrio vulgaris. Journal of Bacteriology 106: 717-719.

Peng, C.G., Park, J.K. & Patenaude, R.W. 1994. Statistics-based classification of microbially influence corrosion in freshwater systems. Wat. Res. 28: 951-959.

Tiller, A.K. 1990. Biocorrosion in Civil Engineering. In Microbiology in Civil Engineering (ed. P. Howsom)  London:  E. & F.N. Spon.

Thompson, J.D., Higgins, D.G. & Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight mmatri choice. Nucl. Acids Res. 22: 4673-4680.

Woese, C.R. 1987. Bacterial evolution. Microbiol. Reviews 51:221-271.

Woese, C.R. & Fox, G.E. 1977. Phylogenetic structure of the prokaryotic domain: The three primary kingdoms. Proceedings of the National Academic of Sciences of the United States of America 74: 5088-5090.

Woese, C.R., Kander, O. & Wheelis, M.L. 1990. Toward a natural system of organisms: proposal for the domains archaea, Bacteria and Eucarya. Proceedings of the National Academic of Sciences of the United States of America 87:4576-4579.

Woese, C.R. and Olsen, G.J. 1986. Archaebacterial phylogeny: perspectives on  the urkingdoms. Systematic and Applied Microbiology 7:161-177.

Woese, C.R., Stackebrandt, E., Marce, T.J. & Fox, G.E. 1985. A phylogenetic definition of the major eubacterial taxa. Systematic and Applied Microbiology 6:143-151.

Zinkevich, V., Bogdarina, I., Kang, H., Hill, M.A.W., Tapper, R.C. & Beech, I.B. 1996. Characterization of exopolimers produced by different isolates of marine sulphate-reducing bacteria. Int. Biodet. Biodeg. 163-172.

 

sebelumnya