Sains
Malaysiana 37(4): 359-364(2008)
Open Circuit Potential Study of Stainless Steel in Environment
Containing Marine Sulphate-Reducing Bacteria
(Kajian Keupayaan Litar Terbuka Terhadap Keluli Tahan
Karat dalam
Persekitaran yang Mengandungi Bakteria Penurun-Sulfat
Marin)
Fathul Karim Sahrani
PPSSSA, Fakulti Sains dan Teknologi
Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor D.E. Malaysia
Madzlan Abd. Aziz, Zaharah Ibrahim & Adibah Yahya
Jabatan Kimia / Biologi, Fakulti Sains
Universiti Teknologi Malaysia
81310 UTM Skudai, Johor D.T. Malaysia
Received: 25 July 2007
/ Accepted: 25 January 2008
ABSTRACT
The
corrosion potential of AISI 304 stainless steel coupons influenced
by sulphate-reducing bacteria (SRB) has been studied. Pure colony
of SRB was isolated from the Malaysia Marine and Heavy Engineering,
Pasir Gudang, Johor. Open circuit potential measurements were carried
out in variable types of culturing solutions with SRB1, SRB2, combination
of SRB1 & SRB2 and without SRBs inoculated. Results showed that
the corrosion potential, Eoc increased in the
presence of SRBs (in pure and mixed culture) compared to that of
control. EDS analysis showed the strong peak of sulphur in coupon
containing SRB cultures compared to the control. ESEM data showed
that the high density cell of SRBs were associated with corroding
sections of surface steel comparing with non-corroding sections
for coupons immersed in VMNI medium containing SRBs.
Keywords:
open circuit potential; stainless steel; sulphate-reducing bacteria
ABSTRAK
Keupayaan
kakisan kupon keluli kalis karat bersiri 304 yang dipengaruhi oleh
bakteria penurun-sulfat (SRB) telah dikaji. Koloni tulen SRB telah
dipencilkan dari Kejuruteraan Berat dan Marin Malaysia, Pasir Gudang
Johor. Pengukuran keupayaan litar terbuka telah dijalankan dalam
berbagai-bagai-bagai jenis larutan pengkulturan menggunakan SRB1,
SRB2, kombinasi SRB1 dan SRB2 serta larutan tanpa kultur SRB. Keputusan
menunjukkan keupayaan kakisan, Eoc meningkat dengan
kehadiran SRB (dalam kultur tulen dan gabungan kultur) berbanding
kawalan. Analisis EDS menunjukkan puncak sulfur yang tinggi dalam
kupon yang mengandungi kultur SRB berbanding kawalan. Data dari
mikroskop elektron imbasan sekitaran (ESEM) menunjukkan kepadatan
sel SRB yang tinggi berasosiasi di bahagian permukaan keluli yang
karat berbanding bahagian yang tidak berkarat bagi kupon yang direndam
dalam larutan VMNI yang mengandungi SRB.
Kata
kunci: bakteria penurun-sulfat; Keluli kalis karat; keupayaan litar
terbuka
REFERENCES/RUJUKAN
Angell, P. & Urbanic,
K. 2000. Sulphate-reducing bacterial activity as a parameter to
predict localized Corr. Sci. of stainless alloys. Corrosion Science
42: 897-912.
Angell, P., Luo, J.S.
& White, D.C. 1995. Microbially sustained pitting corrosion
of 304 stainless steel in anaerobic seawater. Corr. Sci.
37: 1085-1096.
ASTM Designation:
G3-89. 1999. Standard practice for conventions applicable to electrochemical
measurements in corrosion testing, American Society for Testing
and Materials International, West Conshohocken, United States.
Anderko, A.
&
Shuler, P.A. 1997. Computational approach to predicting
the formation of iron sulphide species using stability diagrams.
Computers & Geosciences 23(6): 647-658.
Beech, I.B. &
Cheung, C.W.S. 1996. The use of biocides to contron sulphate-reducing
bacteria in biofioms of mild steel surfaces. Biofouling 9:
231-249.
Beech, I.B., Zinkevich, V.,
Hanjangsit, L. & Avci, R. 1998. Modification of passive layer
of AISI 316 stainless steel in the presence of pseudomonas
biofilm. In : Proceedings of the NACE LATIN CORR 98. 3rd.
Congers of the NACE Latin American Reagen, National Association
of Corrosion Engineers electronic publication.
Cheung, C.W.S., Wals, F.C. Chun, V., Campbell,
S.A. & Beech, J.B. 1994. The role of microbial consortia in
marine corrosion of carbon steel. Int. Biodet. Biodeg. 34(4):
259-279.
Costerton, J.W., Lewandowski,
Z., Caldwell, D.E., Korber, D.R. & Lappin-Scott, R., 1995. Bacterial biofilms in nature and disease. Ann. Rev. Microbiol. 49: 711.
Crum, J.R. & Little, B.J. 1991. Growing
interest in MIC. Nuclear Eng. Int. 47: 112-123.
Dexter, S.C., Duquette, D.J.,
Sierbert, O.W. & Videla, A. 1991. Use and limitations of electrochemical
techniques for investigating microbiological corrosion. Corrosion
47: 308-318.
Dexter, S.C. 1995. Microbiological
effects. In Corrosion Test and Standards, Application and Interpretation,
R. Baboian (ed). ASTM Manual Seris, Philadephia, MNL 20.
Dexter, S.C.
& Gao, G.Y. 1988. Effect of seawater biofilms on corrosion
potential and oxygen reduction of stainless steel. Corrosion
-NACE 44(10): 717–723.
Dowling, N.J.E., Franklin, M.J., White,
D.C., Lee, C.H. & Lundin, C. 1988. The effect of microbiologically
influenced corrosion on stainless steel weldment in seawater. Corrosion
89, NACE Proc. Conf., New Orleans: 187-201.
Dupont , I., Ferron, D. & Novel, G.
1998. Effect of glucose oxidase activity on corrosion potential
of stainless steels in seawater. Int. Biodet. Biodeg. 41:13-18.
Fonseca, I.T.E,.
JoseFeio, M., Lino, A.K., Reis, M.A. & Rainha, V.L. 1997.
The influence of the media on the corrosion of mild steel by Desulfovibrio
desulfuricans bacteria : an electrochemical study. Electrochemica
Acta 43: 213-222.
Franklin, M.J., Nivens, D.E., Mittelman,
M.W., Vass, A.A., Jacj, R.F., Dowling, N.J.E., Mackowski, R.P.,
Duncan, S.L., Ringleberg, D.B. & White, D.C. 1989. An analogue
MIC system with specific bacterial consortia, to test effectiveness
of materials selection and counter-measures. Corrosion 89,
NACE Proc. Conf., New Orleans: 513-523.
Jack, R.F., Ringelberg, D.B. & White,
D.C. 1992. Differential corrosion rates of carbon steel by combinations
Bacillus sp., Hafnia alvei, and Desulfovibrio gigas
established by phospolipid analysis of electrode biofilm. Corrosion
Science 33(12): 1843-1853.
Johnsen, R. & Bardal, E. 1985. Cathodic
properties of different stainless steels in natural seawater. Corrosion
41: 296-304.
Keresztes, Z.S., Telegdi, J., Beczner,
J. & Kalman, E. 1997. The influenced of biocide on the microbiologically
influenced corrosion of mild steel and brass. Electrochimica
Acta. 43(2): 77-85.
Little, B.J., Wagner, P. Hart,
K., Ray, R., Lavoie, D., Nealson, K. & Aguilar, C. 1997. The role of metal –reducing
bacteria in microbiologically influenced corrosion. Paper No. 215,
Proc. Nace Corrosion ’97. Houston, TX: National Association
of Corrosion Engineers International.
Mansfield, F. & Little, B. 1990. Microbially
Influenced Corrosion of anaerobic bacteria. Corrosion 90:
108.
Pedersen, A., Kjelleberg, S. & Hermansson,
M. 1988. A screening methods for bacterial corrosion of metals.
J. Microbial. Meth. 8: 191-198.
Pope, D.H. & Morris, E.A.
1995. Some experiences with microbiologically influenced corrosion
of pipelines. Materials Performance 23:73-82.
Posgate, J.R. 1984. The sulphate reducing bacteria.
2nd ed. England: Cambridge University
Press.
Rainha, V.L. &
Fonseca, I.T.E. 1997. Kinetic studies on the SRB influenced corrosion
of steel: a first approach. Corr. Sci. 39(4): 807-813.
Sarioglu, F., Javaherdashti, R. &
Aksoz, N. 1997. Corrosion of a drilling pipe steel in an environment
of containing sulphate-reducing bacteria. Int. J. Pres. Ves.
& Piping 73: 127-131.
Scotto, V. 1989. Electrochemical studies
of biocorrosion of stainless steel in seawater. Proc. EPRI Workshop,
Microbial Corrosion: 1988. Electric Power Research Institute,
Palo Alto, CA, pp.1-36.
Scotto, V., Di Cintio, R. & Marcenaro, G.
1985. The influence of marine aerobic microbial film on stainless
steel corrosion behavior. Corr. Sci. 25(3): 185-194.
Starosvetsky, D. Khaselev, O. Starosvetsky,
J., Armon, R. & Yahalom, J. 2000. Effect of iron exposure in
SRB media on piting initiation. Corr. Sci. 42:345-359.
Tuovinen, O.H. & Cragnolino, G. 1986.
Proceedings of the Conference on Corrosion Monitoring in Industrial
Plants Using Nondestructive Testing and Electrochemical Methods,
Montreal, Canada, May 1986 pp.413-432.
Videla, H.A. 1991. Microbially induced
corrosion: An updated overview. In: Biodeterioration and Biodegradation,
H.W. Rossmoore, (ed.) London: Elsevier Science.
Videla, H.A. 1995. Electrochemical aspects
of biocorrosion. In Bioextraction and Biodeterioration of Metals.
Gaylarde, C.C. & Videla, H.A. (eds.) U.K: Cambridge University
Press.
Videla, H.A.
1996. Manual of Biocorrosion. Boca Raton: Lewis Publishers.
Werner, S.E.,
Johnson, C.A., Laycock, N.J., Wilson, P.T. & Webster, B.J. 1998.
Pitting of type 304 stainless steel in the presence of a biofilm
containing sulphate-reducing bacteria. Corr. Sc.e 40: 465-480.
Zinkevich, V., Bogdarina, I., Kang, H.,
Hill, M.A.W., Tapper, R.C. & Beech, I.B. 1996. Characterization
of exopolimers produced by different isolates of marine sulphate-reducing
bacteria. Int. Biodet. Biodeg. J. 8:163-172.
|