Sains Malaysiana
37(4): 389-394(2008)
Size-controlled Synthesis and Characterization
of Fe3O4
Nanoparticles by Chemical Coprecipitation
Method
(Sintesis Saiz Terkawal dan Pencirian Nanozarah Fe3O4
Melalui
Kaedah Kepemendakan Kimia)
Chia Chin Hua, Sarani Zakaria, R. Farahiyan, Liew Tze
Khong,
Kien L. Nguyen,
Mustaffa Abdullah & Sahrim Ahmad
School of Applied Physics, Faculty of Science
and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi,
Selangor, Malaysia
Kien L. Nguyen
Australian Pulp
and Paper Institute
Department of
Chemical Engineering
Monash University,
Clayton VIC 3800, Australia
Received: 19 February 2008 / Accepted: 6 March 2008
ABSTRACT
Magnetite (Fe3O4) nanoparticles
have been synthesized using the chemical coprecipitation method.
The Fe3O4 nanoparticles were likely formed
via dissolution-recrystallization process. During the precipitation
process, ferrihydrite and Fe(OH)2 particles formed
aggregates and followed by the formation of spherical Fe3O4
particles. The synthesized Fe3O4 nanoparticles exhibited
superparamagnetic behavior and in single crystal form. The synthesis
temperature and the degree of agitation during the precipitation
were found to be decisive in controlling the crystallite and
particle size of the produced Fe3O4 nanoparticles.
Lower temperature and higher degree of agitation were the favorable
conditions for producing smaller particle. The magnetic properties
(saturation magnetization and coercivity) of the Fe3O4
nanoparticles increased with the particle size.
Keywords: Chemical coprecipitation; ferrite; magnetite;
nanoparticles
ABSTRAK
Nanozarah magnetit (Fe3O4)
telah disintesis dengan menggunakan kaedah pemendakan kimia.
Nanozarah Fe3O4 terbentuk melalui proses
pelarutan-penghabluran. Semasa proses pemendakan, zarah-zarah
ferihidrit dan Fe(OH)2 membentuk agregat and diikuti
dengan pembentukan zarah-zarah magnetit yang berbentuk sfera.
Nanozarah-nanozarah magnetit yang terbentuk menunjukkan sifat
superparamagnet dan berhablur tunggal. Suhu sintesis dan darjah
pengacauan semasa proses pemendakan memainkan peranan penting
dalam pengawalan saiz hablur dan saiz zarah nanozarah Fe3O4. Suhu rendah dan darjah pengacauan yang tinggi merupakan keadaan
yang sesuai untuk menghasilkan zarah dengan saiz yang kecil.
Sifat kemagnetan
tepu dan koersiviti bagi nanozarah Fe3O4
didapati meningkat dengan peningkatan saiz zarah.
Kata kunci: Ferit; magnetit;
nanozarah; kepemendakan kimia
REFERENCES/RUJUKAN
Belleville, P., Jolivet,
J.P., Tronc, E. & Livage, J. 1992. Crystallization of ferric
hydroxide into spinel by adsorption on colloidal magnetite.
Journal of Colloid and Interface Science 150: 453-460.
Bhattacharya, I.N., Pradhan, J.K., Gochhayat, P.K. &
Das, S.C. 2002. Factors controlling precipitation of finer size
alumina trihydrate. International
Journal of Mineral Processing 65: 109-124.
Bilkov¨¢, Z., Slov¨¢kov¨¢, M., Minc, N., F¨¹tterer, C.,
Cecal, R., Hor¨¢k, D., Benes, M., le Potier, I., Krenkov¨¢,
J., Przybylski, M. & Viovy, J. 2006. Functionalised magnetic
micro- and nanoparticles: Optimization and application to ¦Ì-chip
trypsin digestion. Electrophoresis 27: 1811-1824.
Bucak, S., Jones, D.A., Laibinis, P.E. & Hatton, T.A.
2003. Protein separations using colloidal magnetic nanoparticles.
Biotechnology Progress 19: 477-484.
Cornell, R.M., & Schneider, W. 1989. Formation of goethite
from ferrihydrite at physiological pH under the influence of
cysteine. Polyhedron
8: 149-155.
Cornell, R.M., & Schwertmann, U. 2003. The iron oxides: Structure, properties, reactions,
occurences and users. Weimheim: VCH Publishers.
Enomoto, N., Akagi, J.I. & Nakagawa, Z. 1996. Sonochemical powder
processing of iron hydroxides. Ultrasonics
Sonochemistry 3: 97-103.
Gokon, N., Shimada, A., Kaneko, H., Tamaura, Y., Ito, K.
& Ohara, T. 2002. Magnetic coagulation and reaction rate
for the aqueous ferrite formation reaction. Journal
of Magnetism and Magnetic Materials 238: 47-55.
Horng, H.E., Hong, C.Y., Yang, S.Y., & Yang, H.C. 2001.
Novel properties and applications in magnetic fluids. Journal of Physics and Chemistry of Solids
62: 1749-1764.
Hou, Y.Y. & Williams, R.A. 2002. Magnetic stabilisation
of a liquid fluidised bed. Powder
Tech. 124: 287-294.
Huang, Z.B. & Tang, F.Q. 2005. Preparation, structure,
and magnetic properties of mesoporous magnetite hollow spheres.
Journal of Colloid and Interface Science
281: 432-436.
Huber, D.L. 2005. Synthesis, properties and application
of iron nanoparticles. Small
1: 482-501.
Ito, A., Kuga, Y., Honda, H., Kikkawa, H., Horiuchi, A.,
Watanabe, Y. & Kobayashi, T. 2004. Magnetite nanoparticles-loaded
anti-HER2 immunolipsomes for combination of antibody therapy
with hyperthemia. Cancer Letters 212: 167-175.
Jeong, J., Lee, S., Kim, J. & Sung, S. 2004. Magnetic
Properties of ¦Ã-Fe2O3 Nanoparticles made
by coprecipitation method. Physica
Status Solidi (b) 241: 1593-1596.
Jolivet, J.P., Chan¨¦ac, C. & Tronc, E. 2004. Iron oxide
chemistry. From molecular clusters to extended solid networks.
Chemical Communications: 481-487.
LaConte, L., Nitin, N. & Bao, G. 2005. Magnetic nanoparticles
probes. Nanotoday
May: 32-38.
Lee, Y., Lee, J., Bae, C., Park, J., Noh, H., Park, J. &
Hyeon, T. 2005. Large-scale synthesis of uniform and crystalline
magnetite nanoparticles using reverse micelles as nanoreactors
under reflux conditions. Advanced
Functional Materials 15: 503-509.
Misawa, T., Hashimoto, K. & Shimodaira, S. 1974. The
mechanism of formation of iron oxide and oxyhydroxides in aqueous
solutions at room temperature. Corrosion
Science 14: 131-149.
Miyamoto, H. 1976. The magnetic properties of Fe(OH)2.
Materials Research Bulletin
11: 329-336.
Nedkov, I., Kolev, S., Zadro, K., Krezhov, K. & Merodiiska,
T. 2004. Crystalline anisotropy and cation distribution in nanosized
quasi-spherical ferroxide particles. Journal of Magnetism and Magnetic Materials 272-276: 1175-1176.
Ngomsik, A., Bee, A., Draye, M., Cote, G. & Cabuil,
V. 2005. Magnetic nano- and microparticles for metal removal
and environmental applications: A review. Comptes Rendus Chimie 8: 963-970.
Park, S., Kim, J. & Kim, C. 2004. Preparation of photosensitiser-coated
magnetic fluid for treatment of tumour. Journal of Magnetism Magnetic Materials
272-276: 2340-2342.
Qu, S., Yang, H., Ren, D., Kan, S., Zou, G., Li, D. &
Li, M. 1999. Magnetite nanoparticles prepared by precipitation
from partially reduced ferric chloride aqueous solutions. Journal
of Colloid and Interface Science 215: 190-192.
Schwertmann, U., Friedl, J., & Stanjek, H. 1999. From
Fe(III) Ions to Ferrihydrite and then to Hematite. Journal of Colloid and Interface Science 209: 215-223.
Sharma, P., Brown, S., G., W., Santra, S. & Moudgil,
B. 2006. Nanoparticles for bioimaging. Journal
of Colloid and Interface Science 123-126: 471-485.
Sugimoto, T., 2000. Fine
particles. New York: Marcel Dekker Inc.
Tartaj, P., Morales, M.P., Veintemillas-Verdaguer, S., Gonzales-Carreno,
T. & Serna, C.J. 2006. Synthesis, properties, and biomedical
applications of magnetic nanoparticles, in Handbook of Magnetic Materials: Buschow, K.H.J. (ed),. Vol. vol
16.
Tartaj, P., Morales, M.P., Veintemillas-Verdaguer, S., Gonzalez-Carreno,
T. & Serna,
C.J. 2003. The preparation of magnetic nanoparticles for applications
in biomedicine. Journal
of Physics D: Applied Physics 36: 182-197.
Tronc, E., Belleville, P., Jolivet, J.P. & Livage, J.
1992. Transformation of ferric hydroxide into spinel by Fe(II)
adsorption. Langmuir 8: 313-319.
Wang, G.H., Whittaker, G., Harrison, A. & Song, L.J. 1998. Preparation and mechanism
of formation of acicular goethite-magnetite particles by decomposition
of ferric and ferrous salts in aqueous solution using microwave
radiation. Materials Research
Bulletin 33: 1571-1579.
Wang, J., Deng, T. & Dai, Y. 2005. Study on the processes
and mechanism of the formation of Fe3O4
at low temperature. Journal
of Alloys and Compounds 390: 127-132.
Yu, S. & Chow, G.M. 2004. Carboxyl group (-CO2H)
functionalized ferrimagnetic iron oxide nanoparticles for potential
bio-applications. Journal
of Materials Chemistry 14: 2781-2786.