Sains Malaysiana 38(1): 21-30(2009)

 

 

Penilaian Kualiti Subgred Turapan Menggunakan

Kaedah Analisis Spektrum Gelombang Permukaan

(Evaluation of Pavement Subgrade Quality using the Spectral

Analysis of Surface Wave Method)

 

 

S. A. Rosyidi

Jabatan Kejuruteraan Awam, Universiti Muhammadiyah Yogyakarta

Jalan Lingkar Selatan, 55183 Yogyakarta, Indonesia

 

M. R. Taha*, A. Ismail & Z. Chik

Jabatan Kejuruteraan Awam dan Struktur

Fakulti Kejuruteraan, Universiti Kebangsaan Malaysia

Bangi 43600, Selangor, Malaysia

 

Diserahkan:  11 Mac 2008 / Diterima: 22 April 2008

 

 

ABSTRAK

 

Dalam hal yang berkaitan dengan pengurusan turapan jalan raya, keupayaan galas lapisan subgred banyak mempengaruhi keadaan struktur turapan secara keseluruhan.  Oleh itu, penilaian kualiti subgred diperlukan dari masa ke masa bagi mengawal kualiti turapan supaya ianya boleh dilalui kenderaan tanpa mengalami kerosakan.  Kaedah Analisis Spektrum Gelombang Permukaan (lebih dikenali dengan Spectral Analysis of Surface Wave-SASW) merupakan suatu teknik uji kaji seismos tanpa musnah di lapangan yang boleh digunakan untuk penilaian kekukuhan dan kedalaman struktur turapan jalan termasuk lapisan subgred turapan dengan cepat dan menjimatkan.  Makalah ini bertujuan untuk menunjukkan keupayaan kaedah SASW bagi menilai kualiti lapisan subgred turapan.  Kaedah SASW dilakukan berdasarkan kaedah perambatan gelombang R.  Berasaskan data beza fasa gelombang R yang merambat di permukaan turapan, lengkung eksperimen serakan halaju fasa diperolehi.  Selanjutnya melalui proses songsangan, parameter dinamik bahan seperti halaju ricih yang mewakili modulus elastik dan ricih dinamik bahan turapan jalan boleh ditentukan.  Hasil kajian menunjukkan bahawa kaedah SASW berupaya menghasilkan parameter dinamik bahan lapisan subgred turapan yang boleh diguna pakai.   Beberapa model empirik dengan korelasi yang baik berjaya diterbitkan daripada kajian ini yang boleh digunakan  dengan mudah  di lapangan untuk penilaian kekukuhan lapisan subgred secara tepat. 

 

Kata kunci: Kaedah SASW; kekukuhan turapan; kekukuhan subgred; pengurusan turapan

 

ABSTRACT

 

In highway pavement management, the bearing capacity of the subgrade layers have significant influence on the performance of the overall pavement structure.  Thus, the evaluation of subgrade quality is periodically needed for monitoring of  the quality of the pavement so that it can be passed by moving vehicles without damage.  The Spectral Analysis of Surface Wave-SASW, method is an in-situ non-destructive seismic testing method which is used for assessing the stiffness and the depth of road pavement structures including the subgrade layer in a fast and inexpensive manner.  The objective of this paper is to present the capability of the SASW method in the assessment of the quality of pavement subgrade layer.  The SASW method employed is based on the R-wave propagation.  Using the phase difference data of R-waves propagating in the surface of a pavement, the experimental dispersion curve of phase velocity is obtained.  Consequently, inversion process is conducted to obtain the dynamic elastic and shear modulus of the pavement structure.  The results showed that the SASW method was able to determine useful dynamic parameters for evaluation of the subgrade layer performance.  Empirical models with good correlations were also derived from this study which can be easily  used for  in situ evaluation of the subgrade layer stiffness.   

 

Keywords: SASW method; stiffness of pavement; subgrade stiffness; pavement management

 

 

RUJUKAN/REFERENCES

 

Baker, R.F., Byrd, L.G. & Mickle, D. 1975. Handbook of highway engineering. New York : van Nostrand Reinhold Co.

Cho, Y.S. & Lin, F.B. 2001. Spectral analysis of surface wave response of multi layer thin cement mortar slab structures with finite thickness. NDT&E International 34: 115-122.

Cho, Y.S. 2002. NDT Response of spectral analysis of surface wave method to multi-layer thin high strength concrete structure. Ultrasonic 40: 227-230.

Curro, J.R. 1983. Cavity detection and delineation research. Seismic Methodology, Medford Cave Site, Florida . U.S. Army Waterways Experiment Station Technical Report GL-83-1.

Das, B.M. 1993. Principles of Soil Dynamics. Boston : PWS-KENT Publishing Company.

Dravinsky, M. 1983. Ground motion amplification due to elastic inclusions in a half-space. Earthquake Engineering and Structural Dynamics 11: 313-335.

Ewing, W.M., Jardetzky, W.S. & Press, F. 1957. Elastic waves in layered media. New York : McGraw-Hill Book Company, Inc.

Gucunski, N. 1991.  Generation of low frequency Rayleigh wave for the spectral analysis of surface wave method. Ph.D. Diss. The University of Michigan, Ann Arbor.

Gucunski, N. & Woods, R.D. 1992.  Numerical simulation of the SASW test.  Soil Dynamic and Earthquake Engineering 11: 213-227. 

Gucunski, N. Ganji, V. & Maher, M.H. 1996. Effect of soil non homogeneity on SASW testing. Geotechnical Special Publication, American Society of Civil Engineer. 58: 1083-1097.

Gucunski, N., Krstic, V. & Maher, M.H. 1998. Experimental procedures for detection of underground objects by the SASW test. Proc. 1st International Conference on Site Characterization (ISC'98) Geotechnical Site Characterization, pp. 469-472. Atlanta , Georgia .

Haupt, A.W. 1977. Surface-waves in non homogeneous half-space. Proc. the Conference on Dynamical Methods in Soil and Rock Mechanics, Vol.1, pp. 335-367. Karlsruhe , Germany .

Heukelom, W. & Foster, C.R. 1960. Dynamic testing of pavements. Journal of Soil Mechanic and Foundation Division SM1 Part 1: 1-28.

Joh, S.H. 1996.  Advance in interpretation & analysis technique for spectral analysis of surface wave (SASW) measurements. Ph.D. Diss. The University of Texas,  Austin.

Jones, R.B. 1958. In-situ measurement of the dynamic properties of soil by vibration methods. Geotechnique 8: 1-21.

Kabir, M. H. 2005. Residual soils as a material for landfill compacted soil liners, Master’s Thesis, Universiti Kebangsaan Malaysia .

Kausel, E. & Peek, R. 1982. Dynamic loads in the interior of a layered stratum: an explicit solution. Bulletin of the Seismological Society of America 72(5): 1459-1481.

Kausel, E. & Röesset, J.M. 1981.  Stiffness matrices for layered soils.  Bulletin of the Seismological Society of America 71(6): 1743-1761.

Kim, D.-S., Shin, M.-K. & Park H.C. 2001. Evaluation of density in layer compaction using SASW method. Soil Dynamic & Earthquake Engineering 21: 39-46.

Lai, C.G. & Rix, G.J. 1998. Simultaneous inversion of Rayleigh phase velocity and attenuation for near-surface site characterization. Research Report. Georgia Institute of Technology.

Madshus, C. & Westerdahl, H. 1990. Surface wave measurements for construction control and maintenance planning of roads and airfields. Proc. 3rd  International Conference on Bearing Capacity of Roads and Airfields. pp.233-243. Trondheim , Norway .

Marosi, K.T. & Hiltunen, D.R. 2004. Characterization of spectral analysis of surface waves shear wave velocity measurement uncertainty. Journal of Geotechnical and Geoenvironmental Engineering 130(10): 1034–1041.

Matthews, M.C. Hope, V.S. & Clayton, C.R.I. 1996. The geotechnical value of ground stiffness determined using seismic methods. Proc. 30th Annual Conference of the Engineering Group of the Geological Society. pp.1-13.

Mayhew, H.C. 1983. Resilient properties of unbound roadbase under repeated tri-axial loading.  Department of Environment & Department of Transport. United Kingdom . TRRL Report LR 1088.

Mera, R.F., Röesset, J.M. & Stokoe, K.H. 1991. Analytical study & inversion for the spectral analysis of surface waves method. Research Report 1175-3. Center of Transportation Research. Bureau of Engineering Research. The University of Texas at Austin.

Miller, G.F. & Pursey. 1955. On the partition of energy between elastic waves in a semi-infinite solid. Proc. of Ass. Asphalt Pavement Technology, 22: 197-231.

Ministry of Works Malaysia. 1987. National Axle Load Study. Technical Note 3 & 17.

Nazarian, S. & Desai, M.R. 1992. Automated surface wave method: field testing. Journal of Geotechnical Engineering. 119: 1094-1111.

Nazarian, S. & Stokoe II, K. H. 1984. In-situ shear wave velocity from spectral analysis of surface waves. Proc.of 8th World Conf. on Earthquake Engineering  3: 31-38.

Nazarian, S. & Stokoe II, K.H. 1986.  In situ determination of elastic moduli of pavement systems by Spectral-Analysis-of-Surface-Wave method (theoretical aspects). Research Report 437-2. Austin: Center of Transportation Research. Bureau of Engineering Research. The University of Texas at Austin.

Nazarian, S. 1984.  In situ determination of elastic moduli of soil deposits and pavement systems by Spectral-Analysis-of-Surface-Wave method, Ph.D. Diss., the University of Texas at Austin.

Pen, C.K. 1990. Non destructive evaluation of structural condition of road pavements in Malaysia . Penemuan. Bulletin of Institut Latihan dan Penyelidikan. JKR Malaysia 2 (1): 12 – 18.

Prakash, S. & Gupta, M.K. 1970. Report on dynamic properties of soil for Diesel Power House Nakodar. Earthquake Engineering Studies Report. School of Research & Training in Earthquake Engineering. University of Roorkee. India

Prakash, S. & Gupta, M.K. 1971. Report on dynamic properties of soil for Diesel Power House Sirhind. Earthquake Engineering Studies Report. School of Research & Training in Earthquake Engineering. India: University of Roorkee.

Prakash, S., Basavanna, B.M. & Arya, A.S. 1986. Report on soil characteristics for heavy duty forging hammer foundation of Hindustan Aeronautics Ltd., Koraput. Earthquake Engineering Studies Report. School of Research & Training in Earthquake Engineering. India: University of Roorkee.

Puri, V.K. 1969.  Natural frequency of block foundations under free and forced vibrations. Master’s Thesis,  University of Roorkee .

Richart, Jr., F.E., Woods, R.D. & Hall, Jr., J.R. 1970. Vibrations of soil and foundations.  8th Edition. Pp. 413.  New Jersey : Prentice-Hall, Inc. 413pp.

Rix, G.J. 1987. A source listing of DispGIPB, a program for the data reduction of SASW measurements. Research Report. The University of Texas Austin.

Rix, G.J., Bay, J.A. & Stokoe II, K.H. 1990.  Assessing in situ stiffness of curing Portland cement concrete with seismic tests.  Transportation Research Record 1284: 8-15.

Rosyidi, S.A.P. 2004. Penilaian kekukuhan dinamik bahan lapisan turapan menggunakan kaedah SASW, Master’s Thesis, Universiti Kebangsaan Malaysia.

Rosyidi, S.A.P., Taha, M.R., Nayan, K.A.M. & Ismail, A. 2005. Predicting soil bearing capacity of pavement subgrade system using SASW method. Proc. Geoline 2005 - International Symposium, pp.80-90. Lyon , France .

Shell. 1978. Shell pavement design manual. London : Shell Petroleum Co. Inc.

Spang, A.W., Jr. 1995. In-situ measurement of damping ratio using surface waves, Ph.D. Diss. The Georgia Institute of Technology.

Stokoe II, K.H., Wright, S.G., Bay, J.A. & Röesset, J.M. 1994. Characterization of geotechnical sites by SASW method. In: International Society for Soil Mechanics and Foundation Engineering Technical Committee 10.  Woods, R.D. (editor) Proc. 8th International Conference of Soil Mechanics and Fondation Engineering, pp.15-25. New Delhi: India .  

Zagyapan, M. & Fairfield, C.A. 2002. Continuous surface wave & impact methods of measuring the stiffness & density of railway ballast.  NDT&E International. 35: 75-81.

 

*Pengarang untuk surat menyurat

 

 

 

 

sebelumnya