Sains Malaysiana 38(1):
21-30(2009)
Penilaian Kualiti Subgred Turapan Menggunakan
Kaedah Analisis Spektrum Gelombang Permukaan
(Evaluation of Pavement Subgrade Quality using the
Spectral
Analysis of Surface Wave Method)
S. A. Rosyidi
Jabatan Kejuruteraan
Awam, Universiti Muhammadiyah Yogyakarta
Jalan Lingkar
Selatan, 55183 Yogyakarta, Indonesia
M. R. Taha*,
A. Ismail & Z. Chik
Jabatan Kejuruteraan
Awam dan Struktur
Fakulti Kejuruteraan,
Universiti Kebangsaan Malaysia
Bangi 43600,
Selangor, Malaysia
Diserahkan: 11 Mac 2008 / Diterima: 22 April 2008
ABSTRAK
Dalam hal yang berkaitan dengan
pengurusan turapan jalan raya, keupayaan galas lapisan subgred banyak
mempengaruhi keadaan struktur turapan secara keseluruhan. Oleh itu, penilaian kualiti subgred
diperlukan dari masa ke masa bagi mengawal kualiti turapan supaya ianya boleh
dilalui kenderaan tanpa mengalami kerosakan. Kaedah Analisis Spektrum Gelombang Permukaan (lebih dikenali dengan Spectral
Analysis of Surface WaveSASW)
merupakan suatu teknik uji kaji seismos tanpa musnah di lapangan yang boleh
digunakan untuk penilaian kekukuhan dan kedalaman struktur turapan jalan
termasuk lapisan subgred turapan dengan cepat dan menjimatkan. Makalah ini bertujuan untuk menunjukkan
keupayaan kaedah SASW bagi menilai
kualiti lapisan subgred turapan. Kaedah SASW dilakukan berdasarkan kaedah
perambatan gelombang R. Berasaskan data
beza fasa gelombang R yang merambat di permukaan turapan, lengkung eksperimen
serakan halaju fasa diperolehi. Selanjutnya melalui proses songsangan, parameter dinamik bahan seperti
halaju ricih yang mewakili modulus elastik dan ricih dinamik bahan turapan
jalan boleh ditentukan. Hasil kajian
menunjukkan bahawa kaedah SASW berupaya menghasilkan parameter dinamik bahan lapisan subgred turapan yang
boleh diguna pakai. Beberapa model
empirik dengan korelasi yang baik berjaya diterbitkan daripada kajian ini yang
boleh digunakan dengan mudah di lapangan untuk penilaian kekukuhan lapisan
subgred secara tepat.
Kata kunci: Kaedah SASW;
kekukuhan turapan; kekukuhan subgred; pengurusan turapan
ABSTRACT
In highway pavement management,
the bearing capacity of the subgrade layers have significant influence on the
performance of the overall pavement structure. Thus, the evaluation of subgrade quality is periodically needed for
monitoring of the quality of the pavement
so that it can be passed by moving vehicles without damage. The Spectral
Analysis of Surface WaveSASW, method is an in-situ
non-destructive seismic testing method which is used for assessing the
stiffness and the depth of road pavement structures including the subgrade
layer in a fast and inexpensive manner. The objective of this paper is to present the capability of the SASW
method in the assessment of the quality of pavement subgrade layer. The SASW method employed is based on the
R-wave propagation. Using the phase
difference data of R-waves propagating in the surface of a pavement, the
experimental dispersion curve of phase velocity is obtained. Consequently, inversion process is conducted
to obtain the dynamic elastic and shear modulus of the pavement structure. The results showed that the SASW method was
able to determine useful dynamic parameters for evaluation of the subgrade
layer performance. Empirical models with
good correlations were also derived from this study which can be easily used for in situ evaluation of the subgrade layer stiffness.
Keywords: SASW method; stiffness
of pavement; subgrade stiffness; pavement management
RUJUKAN/REFERENCES
Baker, R.F., Byrd, L.G.
& Mickle, D. 1975. Handbook of highway
engineering.
New York
:
van Nostrand Reinhold Co.
Cho, Y.S. & Lin,
F.B. 2001. Spectral analysis of surface wave response of multi layer thin
cement mortar slab structures with finite thickness. NDT&E International 34: 115-122.
Cho, Y.S. 2002. NDT
Response of spectral analysis of surface wave method to multi-layer thin high
strength concrete structure. Ultrasonic 40: 227-230.
Curro, J.R. 1983. Cavity
detection and delineation research. Seismic Methodology,
Medford
Cave
Site,
Florida
.
U.S.
Army Waterways Experiment Station Technical
Report GL-83-1.
Das, B.M. 1993. Principles
of Soil Dynamics.
Boston
:
PWS-KENT Publishing Company.
Dravinsky, M. 1983.
Ground motion amplification due to elastic inclusions in a half-space. Earthquake Engineering and Structural
Dynamics 11: 313-335.
Ewing, W.M., Jardetzky,
W.S. & Press, F. 1957. Elastic waves
in layered media.
New York
:
McGraw-Hill Book Company, Inc.
Gucunski, N. 1991. Generation of low frequency Rayleigh wave for
the spectral analysis of surface wave method. Ph.D. Diss. The University of
Michigan, Ann Arbor.
Gucunski, N. &
Woods, R.D. 1992. Numerical simulation
of the SASW test. Soil Dynamic and Earthquake Engineering 11: 213-227.
Gucunski, N. Ganji, V.
& Maher, M.H. 1996. Effect of soil non homogeneity on SASW testing. Geotechnical Special Publication, American Society
of Civil Engineer. 58: 1083-1097.
Gucunski, N., Krstic, V.
& Maher, M.H. 1998. Experimental procedures for detection of underground
objects by the SASW test. Proc. 1st International Conference on Site Characterization (ISC'98) Geotechnical Site Characterization,
pp. 469-472.
Atlanta
,
Georgia
.
Haupt, A.W. 1977.
Surface-waves in non homogeneous half-space. Proc. the Conference on Dynamical Methods in Soil and Rock Mechanics,
Vol.1, pp. 335-367.
Karlsruhe
,
Germany
.
Heukelom, W. &
Foster, C.R. 1960. Dynamic testing of pavements. Journal of Soil Mechanic and Foundation Division SM1 Part 1: 1-28.
Joh, S.H. 1996. Advance in interpretation & analysis
technique for spectral analysis of surface wave (SASW) measurements. Ph.D. Diss.
The University of Texas, Austin.
Jones, R.B. 1958.
In-situ measurement of the dynamic properties of soil by vibration methods. Geotechnique 8: 1-21.
Kabir, M. H. 2005.
Residual soils as a material for landfill compacted soil liners, Master’s
Thesis, Universiti Kebangsaan
Malaysia
.
Kausel, E. & Peek,
R. 1982. Dynamic loads in the interior of a layered stratum: an explicit
solution. Bulletin of the Seismological
Society of America 72(5): 1459-1481.
Kausel, E. &
Röesset, J.M. 1981. Stiffness matrices
for layered soils. Bulletin of the Seismological Society of
America
71(6): 1743-1761.
Kim, D.-S., Shin, M.-K.
& Park H.C. 2001. Evaluation of density in layer compaction using SASW
method. Soil Dynamic & Earthquake Engineering 21: 39-46.
Lai, C.G. & Rix,
G.J. 1998. Simultaneous inversion of Rayleigh phase velocity and attenuation
for near-surface site characterization. Research
Report. Georgia Institute of Technology.
Madshus, C. &
Westerdahl, H. 1990. Surface wave measurements for construction control and
maintenance planning of roads and airfields. Proc. 3rd International Conference on Bearing Capacity of Roads and Airfields.
pp.233-243.
Trondheim
,
Norway
.
Marosi, K.T. &
Hiltunen, D.R. 2004. Characterization of spectral analysis of surface waves
shear wave velocity measurement uncertainty. Journal of Geotechnical and Geoenvironmental Engineering 130(10):
1034–1041.
Matthews, M.C. Hope,
V.S. & Clayton, C.R.I. 1996. The geotechnical value of ground stiffness
determined using seismic methods. Proc.
30th Annual Conference of the Engineering Group of the Geological
Society. pp.1-13.
Mayhew, H.C. 1983.
Resilient properties of unbound roadbase under repeated tri-axial loading. Department of Environment & Department of
Transport.
United Kingdom
. TRRL Report LR 1088.
Mera, R.F., Röesset,
J.M. & Stokoe, K.H. 1991. Analytical study & inversion for the spectral
analysis of surface waves method. Research
Report 1175-3. Center of Transportation Research. Bureau of Engineering
Research. The University of Texas at Austin.
Miller, G.F. &
Pursey. 1955. On the partition of energy between elastic waves in a
semi-infinite solid. Proc. of Ass. Asphalt Pavement Technology, 22: 197-231.
Ministry of Works
Malaysia. 1987. National Axle Load Study. Technical Note 3 & 17.
Nazarian, S. &
Desai, M.R. 1992. Automated surface wave method: field testing. Journal of Geotechnical Engineering. 119:
1094-1111.
Nazarian, S. &
Stokoe II, K. H. 1984. In-situ shear wave velocity from spectral analysis of
surface waves. Proc.of 8th World Conf. on
Earthquake Engineering 3: 31-38.
Nazarian, S. &
Stokoe II, K.H. 1986. In situ
determination of elastic moduli of pavement systems by
Spectral-Analysis-of-Surface-Wave method (theoretical aspects). Research Report 437-2. Austin: Center of
Transportation Research. Bureau of Engineering Research. The University of
Texas at Austin.
Nazarian, S. 1984. In situ determination of elastic moduli of
soil deposits and pavement systems by Spectral-Analysis-of-Surface-Wave method,
Ph.D. Diss., the University of Texas at Austin.
Pen, C.K. 1990. Non destructive
evaluation of structural condition of road pavements in
Malaysia
. Penemuan. Bulletin of Institut Latihan dan
Penyelidikan. JKR
Malaysia
2 (1): 12 – 18.
Prakash, S. & Gupta,
M.K. 1970. Report on dynamic properties of soil for Diesel Power House Nakodar. Earthquake Engineering Studies Report.
School of Research & Training in Earthquake Engineering. University of
Roorkee.
India
Prakash, S. & Gupta,
M.K. 1971. Report on dynamic properties of soil for Diesel Power House Sirhind. Earthquake Engineering Studies Report.
School of Research & Training in Earthquake Engineering. India: University
of Roorkee.
Prakash, S., Basavanna,
B.M. & Arya, A.S. 1986. Report on soil characteristics for heavy duty
forging hammer foundation of Hindustan Aeronautics Ltd., Koraput. Earthquake Engineering Studies Report.
School of Research & Training in Earthquake Engineering. India: University
of Roorkee.
Puri, V.K. 1969. Natural frequency of block foundations under
free and forced vibrations. Master’s Thesis,
University of
Roorkee
.
Richart, Jr., F.E.,
Woods, R.D. & Hall, Jr., J.R. 1970. Vibrations
of soil and foundations. 8th Edition. Pp. 413.
New Jersey
: Prentice-Hall, Inc. 413pp.
Rix, G.J. 1987. A source
listing of DispGIPB, a program for the data reduction of SASW measurements. Research Report. The University of Texas
Austin.
Rix, G.J., Bay, J.A.
& Stokoe II, K.H. 1990. Assessing in
situ stiffness of curing Portland cement concrete with seismic tests. Transportation
Research Record 1284: 8-15.
Rosyidi, S.A.P. 2004.
Penilaian kekukuhan dinamik bahan lapisan turapan menggunakan kaedah SASW, Master’s
Thesis, Universiti Kebangsaan Malaysia.
Rosyidi, S.A.P., Taha, M.R., Nayan, K.A.M. & Ismail, A. 2005. Predicting soil bearing capacity of pavement subgrade system
using SASW method. Proc. Geoline 2005 -
International Symposium, pp.80-90.
Lyon
,
France
.
Shell. 1978. Shell pavement design manual.
London
: Shell Petroleum
Co. Inc.
Spang, A.W., Jr. 1995.
In-situ measurement of damping ratio using surface waves, Ph.D. Diss. The
Georgia Institute of Technology.
Stokoe II, K.H., Wright,
S.G., Bay, J.A. & Röesset, J.M. 1994. Characterization of geotechnical
sites by SASW method. In: International Society for Soil Mechanics and Foundation
Engineering Technical Committee 10. Woods, R.D. (editor) Proc. 8th International Conference of Soil Mechanics and Fondation
Engineering, pp.15-25. New Delhi:
India
.
Zagyapan, M. &
Fairfield, C.A. 2002. Continuous surface wave & impact methods of measuring
the stiffness & density of railway ballast. NDT&E International. 35:
75-81.
*Pengarang untuk surat menyurat
|