Sains Malaysiana 39(2)(2010): 169–174
Correlation
between Hotspots and Air Quality in Pekanbaru, Riau,
Indonesia in 2006-2007
(Korelasi antara Titik Panas dengan Kualiti Udara di Pekanbaru, Riau, Indonesia pada 2006-2007)
ADELIN ANWAR1, LIEW JUNENG1, MOHAMED ROZALI OTHMAN2 & MOHD TALIB LATIF*, 1
1School of Environmental and Natural Resource Sciences, Faculty
of Science and Technology
Universiti Kebangsaan Malaysia, 43600 Bangi,
Selangor, Malaysia
2School of Chemical Sciences and Food Technology
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi,
Selangor, Malaysia
Diserahkan:
6 Mei 2009 / Diterima: 7 Julai 2009
ABSTRACT
Biomass burning is one of
the main sources of air pollution in South East Asia, predominantly during the
dry period between June and October each year. Sumatra and Kalimantan,
Indonesia, have been identified as the regions connected to biomass burning due
to their involvement in agricultural activities. In Sumatra, the Province of
Riau has always been found to have had the highest number of hotspots during
haze episodes. This study aims to determine the concentration of five major
pollutants (PM10, SO2, NO2,
CO and O3) in Riau,
Indonesia, for 2006 and 2007. It will also correlate the level of air
pollutants to the number of hotspots recorded, using the hotspot information
system introduced by the Malaysian Centre for Remote Sensing (MACRES).
Overall, the concentration of air pollutants recorded was found to increase
with the number of hotspots. Nevertheless, only the concentration of PM10 during a haze episode
is significantly different when compared to its concentration in non-haze
conditions. In fact, in August 2006, when the highest number of hotspots was
recorded the concentration of PM10 was
found to increase by more than 20% from its normal concentration. The
dispersion pattern, as simulated by the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT),
showed that the distribution of PM10 was
greatly influenced by the wind direction. Furthermore, the particles had the
capacity to reach the Peninsular Malaysia within 42 hours of emission from the
point sources as a consequence of the South West monsoon.
Keywords: Air quality;
biomass burning; HYSPLIT model;
hotspots
ABSTRAK
Pembakaran biojisim merupakan antara punca utama pencemaran udara di Asia Tenggara, terutamanya pada musim kering antara Jun hingga Oktober setiap tahun. Sumatera dan Kalimantan,
Indonesia, telah dikenal pasti sebagai rantau yang dikaitkan dengan pembakaran biojisim yang disebabkan oleh aktiviti pertanian. Di Sumatera, Propinsi Riau, merupakan daerah yang telah dikenal pasti sebagai daerah yang merekodkan jumlah titik panas yang paling tinggi semasa episode jerebu. Kajian ini bertujuan untuk menentukan kepekatan lima parameter utama bahan pencemar udara (PM10,
SO2, NO2, CO dan O3) di Daerah Riau, pada tahun 2006 dan 2007. Aras bahan tersebut telah dikorelasi dengan jumlah titik panas yang direkodkan melalui sistem informasi titik panas yang telah diperkenalkan oleh Pusat Remote Sensing Negara,
Malaysia (MACRES). Keseluruhannya, kepekatan bahan pencemar udara yang direkodkan didapati meningkat dengan peningkatan jumlah titik panas yang direkodkan. Walau bagaimanapun, hanya kepekatan PM10 yang menunjukkan perbezaan yang signifikan semasa episod jerebu berbanding dengan masa di mana tiada jerebu berlaku. Malahan pada bulan Ogos 2006, semasa jumlah titik panas direkodkan pada jumlah yang tertinggi, didapati kepekatan PM10 meningkat sebanyak 20% berbanding kepekatan yang biasa direkodkan. Corak sebaran yang disimulasi menggunakan Model Trajektori Integrasi Lagrangian Hibrid Partikel Tunggal (HYSPLIT) menunjukkan taburan PM10 amat dipengaruhi oleh arah pergerakan angin. Tambahan lagi, pergerakan partikel berkeupayaan untuk sampai ke Semenanjung Malaysia dalam tempoh 42 jam dari titik sumber disebabkan oleh monsun Barat Daya.
Kata kunci: Kualiti udara; model HYSPLIT; pembakaran biojisim; titik panas
REFERENCES
Byron,
N. 2004. Managing smoke: Bridging the gap between policy and research: Or “what
to do while it is raining outside...” Agriculture, Ecosystems and
Environment 104: 57-62.
Chin,
L.S. 2001. Satelite detection of forest fires and
burn scars. Workshop on Minimizing the Impact of Forest Fire on Biodiversity
in Asean, edited by M. Radojevic.
Brunei Darusalam, Nova Science Publishers.
Groot, W.J.D., Field, R.D., Brady, M.A., Roswintiarti, O. & Mohamad,
M. 2007. Development of the Indonesian and Malaysian fire danger rating
systems. Mitigation and Adaptation Strategies for Global Change 12:
165-180.
Heil, A. & Goldammer,
J.G. 2001. Smoke-haze pollution: A review of the 1997 episode in Southeast
Asia. Reg Environ Change 2: 24-37.
Jepson,
P., Jarvie, J.K., MacKinnon, K. & Monk, K.A.
2001. The end for Indonesia’s lowland forests?. Science 292: 859-861.
Jones,
D.S. 2006. ASEAN and transboundary haze pollution in
Southeast Asia. Asia Europe Journal 4: 431-446.
Kansal, A. 2009. Sources and reactivity of
NMHCs and VOCs in the atmosphere: A review. Journal of Hazardous Materials 166:
17-26.
Ketterings, Q. M., Tri Wibowo, T., Van Noordwijk, M.
& Penot, E. 1999. Farmers’ perspectives on
slash-and-burn as a land clearing method for small-scale rubber producers in Sepunggur, Jambi Province, Sumatra, Indonesia. Forest
Ecology and Management 120: 157-169.
Kita,
K., Fujiwara, M. & Kawakami, S. 2000. Total ozone increase associated with
forest fires over the Indonesian region and its relation to the El
Nino-Southern oscillation Atmospheric Environment 34: 2681-2690.
Mahmud,
M. 2005. Active fire and hotspots emissions in Peninsular Malaysia during 2002. Geografia 1: 1-17.
Mahmud,
M. 2008. Greenhouse gas emission from a land use change activity during haze
episode in Southeast Asia. Jurnal e-Bangi3: 1-15.
Miettinen, J. & Liew,
S.C. 2005. Connection between fire and land cover change in Southeast Asia: a
remote sensing case study in Riau, Sumatra. International Journal of Remote
Sensing 26: 1109-1126.
Murdiyarso, D. & Adiningsih, E. S. 2007. Climate anomalies, Indonesian
vegetation fires and terrestrial carbon emissions Mitigation and Adaptation
Strategies for Global Change 12: 101-112.
Ostermann, K. & Brauer,
C. 2001. Air quality haze episodes and its impact on health. Drinking water
from forests and grasslands: a synthesis of the scientific literature (G.
E. Dissmeyer, ed.). Asheville, NC U.S. Department of
Agriculture, Forest Service, Southern Research Station.
Page,
S. E., Siegert, F., Rieley,
J. O., Boehm, H.-D. V., Jaya, A. & Limin, S.
2002. The amount of carbon released from peat and forest fires in Indonesia
during 1997. Nature 420: 61-65.
Saharjo, B. H. 2007. Shifting cultivation in peatlands Mitigation and Adaptation Strategies for
Global Change 12(1): 135-146.
Saharjo, B. H. & Munoz, C. P. 2005.
Controlled burning in peat lands owned by small farmers: A case study in land
preparation Wetlands Ecology and Management 13: 105-110
Suyanto, S., Applegate, G., Permana, R. P., Khususiyah, N.
& Kurniawan, I. 2004. The role of fire in
changing land use and livelihoods in Riau-Sumatra. Ecology and Society 9:
15.
*Pengarang untuk surat-menyurat; email: talib@ukm.my
|