Sains Malaysiana
39(3)(2010): 405–412
Profil
Aktiviti Laktat Dehidrogenase, Asid Fosfatase Rintang Tartarat dan Alkalin
Fosfatase pada Air Liur Semasa Rawatan Ortodontik
(Profiles of
Lactate dehydrogenase, Tartrate Resistant Acid Phosphatase and Alkaline
Photophatase in Saliva during Orthodontic Treatment)
Shahrul
Hisham Zainal Ariffin1*, Mohd Faiz Ellias1, Rohaya Megat
Abdul Wahab2,
Yosni Bakar3 & Sahidan Senafi1
1Pusat Pengajian Biosains dan Bioteknologi Fakulti Sains dan
Teknologi Universiti Kebangsaan Malaysia 43600 Bangi, Selangor D.E., Malaysia
2Jabatan Ortodontik Fakulti Pergigian Universiti Kebangsaan
Malaysia 50300 Kuala Lumpur, Malaysia
3Pusat Pengajian Sains Sekitaran dan Sumber Alam Fakulti Sains dan
Teknologi Universiti Kebangsaan Malaysia 43600 Bangi, Selangor, D.E. Malaysia
Diserahkan: 14 Julai 2009 / Diterima: 7 Januari 2010
ABSTRAK
Proses
pergerakan gigi semasa rawatan ortodontik boleh dikelaskan kepada empat fasa
iaitu pengaktifan (berkait inflamasi terhadap tisu serta kematian sel),
penyerapan, proses berbalik dan pembentukan tulang. Pergerakan gigi ini berkait
rapat dengan perubahan metabolik di sekitar mulut. Objektif kajian ini adalah
untuk menentukan profil penanda biologi enzim di dalam air liur individu yang
menerima rawatan ortodontik iaitu laktat dehidrogenase (LDH) bagi proses
inflamasi, asid fosfatase rintang tartarat (TRAP) bagi proses penyerapan tulang
dan alkali fosfatas (ALP) bagi proses pembentukan tulang. Sampel air liur
diambil daripada 6 individu yang menerima rawatan ortodontik. Aktiviti kesemua
enzim diambil sebelum pendakap dipasang (aktiviti normal) diikuti dengan hari
ke-3, 7, 10, 14, 17, 21, 24, 28 dan 31 selepas pengaktifan. Hasil kajian
mendapati kesemua enzim (LDH, TRAP and ALP) menunjukkan peningkatan yang
signifikan (p≤0.05) selepas rawatan diberikan berbanding aktiviti normal.
LDH didapati meningkat pada peringkat awal rawatan (hari ke-3,7 dan 10), TRAP
pada hari ke 14 dan 17 diikuti dengan ALP pada hari ke-17, 21 dan 24. Sebagai
kesimpulan, profil enzim sepanjang rawatan ortodontik menunjukkan proses
inflamasi berlaku di peringkat awal rawatan diikuti proses penyerapan dan
pembentukan tulang. Selain itu, keseluruhan fasa inflamasi, penyerapan dan
pembentukan tulang ortodontik didapati mengambil masa 24 hari.
Kata
kunci : Air liur; enzim; ortodontik; pemodelan tulang
ABSTRACT
During orthodontic treatment, the progress
of tooth movements can be classified into four stages, i.e. activation (related
to tissue inflammation or cells’ death), resorption, reversal and restructuring
of new bones. Tooth movement is related to metabolic changes around the mouth.
The objective of this study was to determine enzymes profiles from patient’s
saliva during orthodontic tooth movement, i.e., lactate dehydrogenase (LDH) for
inflammation, tartrate resistant acid phosphatase (TRAP) for bone resorption
and alkaline phosphatase (ALP) for bone formation. Saliva samples were collected
from 6 orthodontic patients. Activities of all enzymes were measured before placement
of orthodontic fixed appliances (normal activity) followed with day 3, 7, 10,
14, 17, 21, 24, 28 and 31 after the braces were activated. All enzymes (LDH,
TRAP and ALP) showed significantly (p≤0.05) higher specific activities as
compared to normal. LDH showed the increment at the early phase of treatment (day
3,7 and 10), TRAP at day 14 and 17 followed by ALP at day 17, 21 and 24. As a
conclusion, the profiles of enzymes activities showed that inflammation occured
during early phase of treatment followed by bone resorption and bone formation.
In addition, the inflammations, resorption and bone formation phases in
orthodontic treatment were found to be completed within 24 days.
Keywords
: Bone remodeling; enzymes; orthodontic; air liur
RUJUKAN
Asma, A.A.A., Rohaya, M.A.W. & Shahrul Hisham, Z.A. 2008. Crevicular
Alkaline Phosphatase Activity During Orthodontic Tooth Movement: Canine
Retraction Stage. Journal of Medical Sciences 8(3): 228-233.
Atici, K., Yamalik, N., Eratalay, K. & Etikan, I. 1998.
Analysis of gingival crevicular fluid intracytoplasmic enzyme activity in
patients with adult periodontitis and rapidly progressive periodontitis. A
longitudinal study model with periodontal treatment. Journal of
Periodontology 69: 1155–1163.
Bradford, M.M. 1976. A rapid and sensitive method for the quantitation
of microgram quantities of protein utilizing the principle of protein-dye
binding. Analytical Biochemistry 72: 248-254.
Eni Juliana, A., Rohaya M.A.W., Sahidan, S., Nik Marzuki, S. &
Shahrul Hisham, Z.A. 2009. Molecular Existence of Mature Odontoblast and
Osteoblast Cells In Adult Human Pulp Tissues. Asian Journal of Biochemistry 4(2):
36-44
Gunther, T. & Shinke, T. 2000. Mouse genetics have uncovered new
paradigm in bone biology. TEM 11: 189-193.
Halleen, J.M., Alatalo, S.L., Suominen, H., Cheng, S., Janckila, A.J.
& Vaananen, H.K. 2000. Tartrate-Resistant Acid Phosphatase 5b: A Novel
Serum Marker of Bone Resorption. Journal of Bone and Mineral Research 15:
1337–1345.
Hill, P.A. 1998. Bone remodeling. British Journal of
Orthodontics 25: 101-107. Intan Zarina, Z.A., Shahrul Hisham, Z.A., Rohaya,
M.A.W., Sahidan, S. & Zaidah, Z.A. 2008.
Osteoclast and Osteoblast Development of Mus musculus Haemopoietic
Mononucleated Cells. Journal of Biological Sciences 8(3): 506-516.
Janckila, A.J., Nakasato, Y.R., Neustadt, D.H. & Yami, L.T. 2003.
Disease-Specific Expression of Tartrate-Resistant Acid Phosphatase Isoforms. Journal
of Bone and Mineral Research 18: 1916–1919.
Krishnan, V. & Davidovitch, Z. 2006. Cellular, molecular, and tissue-level
reactions to orthodontic force. American Journal of Orthodontics and
Dentofacial Orthopedics 129: 469e.1- 460e.32
Melsen, B. 1999. Biological reaction of alveolar bone to orthodontic
tooth movement. Angle Orthodontic 69: 151- 158.
Numabe, Y., Hisano, A., Kamoi, K., Yoshic, H., Ito, K., Karihara, H.
& Nomura, Y. 2004. Analysis of air liur for periodontal diagnosis and
monitoring. Periodontology 40: 115-119.
Perinetti, G., Paolantonio, M., D’Attilio, M., D’Archivio, D., Tripodi,
D. & Festa, F. 2002. Alkaline phosphatase activity in gingival crevicular
fluid during human orthodontic tooth movement. American Journal of
Orthodontics and Dentofacial Orthopedics 122: 548–556.
Perinetti, G., Serra, E., Paolantonio, M., Bruè, C., Di Meo, S.,
Filippi, M.R., Festa, F., & Spoto, G. 2005. Lactate dehydrogenase activity
in human gingival crevicular fluid during orthodontic treatment: A controlled,
short-term longitudinal study. Journal of Periodontology 76(3): 411- 417.
Perinetti, G., Varvara, G., Salini, L. & Tetè, S. 2005.
Alkaline phosphatase activity in dental pulp of orthodontically treated teeth. American
Journal of Orthodontics and Dentofacial Orthopedics 128: 492-496.
Serra, E., Perinetti, G., D’Attilio, M., Cordella, C.,
Paolantonio, M., Festa, F. & Spoto, G. 2003. Lactate dehydrogenase activity
in gingival crevicular fluid during orthodontic treatment. American Journal
of Orthodontics and Dentofacial Orthopedics 124(2): 206-211.
Stucki, U., Schnid, J., Hammerle, C. & Lang, N. 2001. Temporal
and local appearance of alkaline phosphatase activity in early stages of guided
bone regeneration. Clinical Oral Implants Research 12: 121-127.
Wang, W., Sun, X. & Jin, W. 2003. Determination of
lactate dehydrogenase in human erythrocytes by capillary electrophoresis with
electrochemical detection. Journal of Chromatography B 798: 175–178.
*Pengarang
untuk surat-menyurat; email: hisham@ukm.my