Sains Malaysiana 39(5)(2010): 775-784

 

Sifat Terma dan Kerintangan Api Poliuretana Berasaskan Minyak

Isirung Sawit dan Minyak Kacang Soya

(Thermal and Fire Resistant Properties of Palm Kernel Oil and Soybean Oil-Based Polyurethanes)

 

Wong Chee Sien & Khairiah Haji Badri*

School of Chemical Sciences and Food Technology

Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor, Malaysia

 

Diserahkan: 14 April 2009 / Diterima: 18 Ogos 2009

 

ABSTRAK

 

Sifat terma dan pembakaran busa poliuretana minyak isirung sawit dan minyak soya dibandingkan. Monoester berkumpulan hujung hidroksil dihasilkan melalui tindak balas minyak isirung sawit (PKO) dan minyak kacang soya (SBO) dengan sebatian polihidrik yang mengandungi dietanolamina/etilena glikol dan mangkin kalium asetat. Tindak balas esterifikasi dan kondensasi ini dijalankan dengan nisbah minyak sayuran kepada sebatian polihidrik adalah 80:20. Monoester ini kemudiannya ditindakbalaskan dengan 2,4-difenilmetana diisosianat untuk menghasilkan poliuretana melalui tindak balas pempolimeran penambahan. Sifat termanya dibandingkan melalui analisis kalorimetri imbasan kebezaan (DSC), analisis termogravimetri (TGA), bom kalorimetri, ujian kestabilan dimensi dan ujian kerintangan api. Busa poliuretana SBO mempunyai nilai entalpi yang rendah daripada busa poliuretana PKO iaitu 7151 kal g-1 berbanding 7223 kal g-1 manakala analisis TGA menunjukkan peratus kehilangan jisim busa poliuretana SBO yang rendah (91.0%) berbanding busa poliuretana PKO (92.3%) dengan suhu kestabilan Tstabil adalah masing-masing 196 dan 198oC. Kadar kebakaran busa poliuretana SBO ialah 0.6-1.2 mm s-1, rendah daripada kadar kebakaran busa poliuretana PKO iaitu 1.1-1.6 mm s-1. Menerusi ujian kestabilan dimensi, didapati nilai pengecutan dan pengembangan busa poliuretana SBO adalah kurang daripada busa poliuretana PKO.

 

Kata kunci: Entalpi; minyak isirung sawit; minyak kacang soya; poliuretana

 

ABSTRACT

Thermal and burning properties of palm kernel oil and soybean oil-based polyurethanes were compared. Monoester with hydroxyl end group was prepared by reacting the palm kernel oil (PKO) and the soybean oil (SBO) with polyhydric compound consisting of diethanolamine/ethylene glycol and potassium acetate as the catalyst. The esterification and condensation reactions were conducted with the ratio of the vegetable oils to the polyhydric compound of 80:20. The monoester was then reacted with 2, 4-diphenylmethane diisocyanate to produce the polyurethane via addition polymerization. The thermal properties were compared through differential scanning calorimetry (DSC) analysis, thermogravimetry (TGA) analysis, bomb calorimetry, dimensional stability test and fire retarding test. SBO-based polyurethane foam had lower entalphy then the PKO-based polyurethane foam with values of 7151 cal g-1 comapred to 7223 cal g-1. Similarly, the TGA analysis indicated that the percentage of weight loss of the former was also lower (91.0%) then the latter (92.3%) with stable temperatures, Tstable at 196 and 198 oC, respectively. The burning rate of the SBO-based polyurethane foam was 0.6-1.2 mm¥s-1, lower then the PKO-based polyurethane foam which was 1.1-1.6 mm s-1. However, the dimensional stability test showed that the shrinkage and expansion values were lesser for the SBO-based polyurethane foam compared to the PKO-based polyurethane.

 

Keywords: Entalphy; palm kernel oil; polyurethane; soybean oil

 

RUJUKAN

 

Badri, K.H., Ahmad, S.H. & Zakaria, S. 2000. Development of zero ODP rigid polyurethane foam from RBD palm kernel oil. Journal of Material Science 19: 1355-1456.

Berlin, A.A. & Zhitinkina, A.K. 1982. Polyurethane Foams. New York: Hanser Publications.

Brady, E.J. & Senesse, F. 2004. Chemistry Matter and Its Changes. 4th ed. Hoboken, New Jersey: John Wiley & Sons Inc.

Bruins, P.F. 1969. Fundamental chemistry and catalysis of polyurethanes. Dlm. Polyurethane Technology, Ed. Frisch, K.C. New York: John Wiley & Sons Inc.

Bruins, P.F. 1969. Flame retardant polyurethane foams. Dlm. Polyurethane Technology, Ed. Hilado, C.J. New York: John Wiley & Sons Inc.

Graff, B. 1982. Composition, quality and end uses of palm oil. Dlm. Oil Palm Research, Ed. Wood, B.J. Netherlands: Elsevier Scientific Publishing Company.

Gryglewic, S., Piechocki, W. & Gryglewicz, G. 2003. Preparation of polyol monoester based on vegetable and animal fats. Bioresource Tehcnology 8: 35-39.

Guo, A., Javni, I. & Petrovic, Z. 2000. Rigid polyurethane foams based on soybean oil. Journal of Applied Polymer Science 77: 467-473.

Hinson, K. & Hartwig, E.E. 1982. Soybean Production In The Tropic. Rome: Food And Agriculture Organization Of The United Nations.

Javni, I., Petrovic, Z.S., Guo, A. & Fuler, R. 1999. Thermal stability of polyurethanes based on vegetable oils. Journal of Applied Polymer Science 77: 1723-1734.

Javni, I., Husic, S. & Petrovic, Z.S. 2005. Thermal and mechanical properties of glass reinforced soy-based polyurethane composites. Composites Science and Technology 65: 19-25.

Luda, M.P., Bracco, P., Costa, L. & Levchik, S.V. 2003. Discolouration in fire retardant flexible polyurethane foam. Part 1. Characterisation. Polymer Degradation and Stability 83: 215-220.

Neil, W. 1999. Physical Properties of Fats, Oils and Emulsions. London: AOCS Press

Norman, A.G. 1978. Soybean Physiology, Agronomy and Utilization. San Diego and New York: Academic Press Inc.

Pushparajah, E. & Rajadurai, M. 1983. Palm Oil Product Technology in the Eighties, Kuala Lumpur: The Incorporated Society of Planters.

Schiller, A.M. 1973. Methods for increasing the thermal stability of polyurethanes. Dlm. Soviet Progress in Polyurethane Series 1, disunting oleh Apukhtina, N.P. Technomic Publishing Co. Inc.

Skoog, D.A., Holler. F. J. & Niemann. T.A. 1998. Principle of Instrumental Analysis. 5th Ed. Australia: Thomson Learning Inc.

Smith, A.K. & Circle, S.J. 1972. Soybeans: Chemistry and Technology. Westport, Connecticut: The Avi Publishing Company,Inc.

Suppes, G.J., Kiatsimkul, P.P. & Sutterlin, W.R. 2007. Production of new soy-based polyols by enzyme hydrolysis of bodied soybean oil. Industrial Crops and Products 25: 202-209.

Takahasi, T., Kimura, T. & Sakurai, K. 1998. Structure and liquid crystallinity of the comb-like complexes made of poly(ethylene imine) and some aliphatic carboxylic acids. Polymer 40: 5939-5945.

Tanaka, R., Hirose, S. & Hatakeyama, H. 2007. Preparation and characterization of polyurethane foams using a palm oil-based polyol.  Bioresource Tehcnology 99: 3810-3816.

Wood, G. 1991. ICI Polyurethanes Book, 2nd ed, New York: The ICI Polyurethane & Wileys Publication.

Yusof Basiron, Ariffin Darus, Ma Ah Ngan & Chan Kook Weng. 2005. Palm Kernel Products: Characteristics and Applications. Kuala Lumpur: Malaysian Palm Oil Board.

 

*Pengarang untuk surat-menyurat; e-mail: kaybadri@ukm.my

 

   

 

 

sebelumnya