Sains Malaysiana 39(5)(2010): 837–844
Enhancement of the Production
Yield of Fluorescent Silicon Nanostructures Using Silicon-Based Salts
(Peningkatan
Hasil Pengeluaran Nanostruktur Silikon Berpendarfluor Menggunakan Garam Berasaskan Silikon)
Laila H. Abuhassan*
Department of Physics, Faculty
of Science
University of Jordan, Jubeiha,
Amman 11942, Jordan
Diserahkan: 21 Oktober 2008 / Diterima:
30 Disember 2009
ABSTRACT
The
increase in the amount of extracted silicon nanostructures resulting from the incorporation
of sodium metasilicon salt in the etching solution was investigated. Silicon
nanostructures were prepared in the form of thin fluorescent films via
anodisation etching of silicon wafers in aqueous HF/H2O2 solution in the presence of the silicon-based salt. The quality
of the fluorescent films was assessed using several nondestructive analytical
techniques. The nanostructures produced were then extracted. The harvested
nanostuctures were examined for quantitative elemental analysis using atomic
absorption spectrophotometry. This investigation was limited to silicon
nanostructures with size ≤ 200 nm. The results indicate that the
incorporation of the silicate increased the yield of silicon nanostructures
production significantly.
Keywords:
Nondestructive characterisation; nanomaterial; silicate; silicon nanostructures
ABSTRAK
Peningkatan
amaun nanostruktur silikon yang diperolehi hasil gabungan garam natrium
metasilikon di dalam larutan punaran telah dikaji. Nanostruktur silikon
disediakan dalam bentuk filem nipis pendarfluor melalui punaran penganodan
wafer silikon di dalam larutan akueus HF/H2O2 dengan kehadiran garam silikon. Kualiti filem pendarfluor
dinilai menggunakan beberapa teknik analisis tanpa musnah. Nanostruktur yang
dihasilkan dilakukan analisis kuantitatif bagi unsur-unsur mengggunakan
spektrofotometri serapan atom. Kajian ini dihadkan kepada nanostruktur silikon
bersaiz ≤ 200 nm. Keputusan menunjukkan kehadiran silikat telah
meningkatkan hasil pengeluaran nanostruktur silikon dengan signifikan.
Kata kunci:
Nanobahan; nanostruktur silikon; pencirian tanpa musnah, silikat
RUJUKAN
Abuhassan, L.H. 2009. Optimization
of Fluorescent Silicon Nanomaterial Production Using Peroxide/Acid/Salt
Technique. Sains Malaysiana 38: 77-83.
Abuhassan, L.H. & Nayfeh, M.H.
2005. Electrodeposition of fluorescent Si nanomaterial from acidic sodium
silicate solutions. Mat. Res. Soc. Symp. Proc. 862. A8: 10.
Abuhassan, L.H. & Nayfeh, M.H.
2007. Material analysis of fluorescent Si nanomaterial prepared
electrochemically from sodium silicate water glass solutions. Dirasat 34:
183-191.
Baldwin, R.K. Pettigrew, K.A. Garno,
J.C. Power, P.P. Liu, G-Y & Kauzlarich, S.M. 2002a. Room Temperature
Solution Synthesis of Alkyl-Capped Tetrahedral Shaped Silicon Nanocrystals. J.
Am. Chem. Soc. 124: 1150-1151.
Baldwin, R.K. Pettigrew, K.A. Ratai,
E. Augustine, M.P. & Kauzlarich S.M. 2002b. Solution reduction synthesis of
surface stabilized silicon nanoparticles. Chem. Commun.
1822-1823.
Bley, R.A. Kauzlarich, S.M. Davis,
J.E. & Lee, H.W.H. 1996. Characterization of Silicon Nanoparticles Prepared
from Porous Silicon. Chem. Mater. 8: 1881-1888.
Cabaniss, Stephen E. & McVey,
lain F. 1995. Aqueous infrared carboxylate absorbances: aliphatic
monocarboxylates. Spectrochimica Acta Part A 51: 2385-2395.
Carter R.S., Harley S.J., Power P.
P. & Augustine M.P. 2005. Use of NMR Spectroscopy in the Synthesis and
Characterization of Air- and Water-Stable Silicon Nanoparticles from Porous
Silicon. Chem. Mater. 17: 2932-2939.
Di Nunzio, P.E. & Martelli, S.
2006. Coagulation and Aggregation Model of Silicon Nanoparticles from Laser
Pyrolysis. Aerosol Science and Technology 40: 724-734.
Dumas, C. Grisolia, J. Ressier, L.
Arbouet, A. Paillard, V. Ben Assayag, G. Claverie, A. Van den Boogaart, M.A.F.
& Brugger, J. 2007. Synthesis of localized 2D-layers of silicon
nanoparticles embedded in a SiO2 layer by a stencil-masked ultra-low energy ionimplantation
process. Phys. Stat. Sol. A. 204: 487-491.
Heath, J. R. 1992. A
liquid-solution-phase synthesis of crystalline silicon. Science 258(5085):
1131-1133.
Holmes, J.D. Ziegler, K.J. Doty,
R.C. Pell, L.E. Johnston, K.P. & Korgel, B.A. 2001. Highly Luminescent
Silicon Nanocrystals with Discrete Optical Transitions. J. Am. Chem. Soc. 123:
3743-3748.
Kobayashi, M. Liu, S-M. Sato, S.
Yao, H. & Kimura, K. 2006. Optical Evaluation of Silicon Nanoparticles
Prepared by Arc Discharge Method in Liquid Nitrogen. Jpn. J. Appl. Phys. 45: 6146-6152.
Kumar, S. Dixit, P.N. Rauthan,
C.M.S. Parashar, A. & Gope, J. 2008. Effect of power on growth of
nanocrystalline silicon films. J. Phys.: Condens. Matter 20: 335215
(7pp).
Mitas L., Therrien J., Twesten R.,
Belomoin G., and Nayfeh, M.H. 2001. Effect of surface reconstruction on the
structural prototypes of ultrasmall ultrabright Si29 nanoparticles. Appl. Phys. Lett.
78: 1918-1920.
Nayfeh, M.H. Rogozhina, E.V. &
Mitas, L. 2003. Synthesis, Functionalization and Surface Treatment of
Nanoparticles, edited by Marie-Isabelle Baraton, 173-231. USA American Scientific
Publishers.
Nielsen, D. Abuhassan, L.H.
Alchihabi, M. Al-Muhanna, A. Host, J. & Nayfeh, M.H. 2007. Current-less
Anodization of intrinsic silicon powder grains: Formation of fluorescent Si
nanoparticles. J. Appl. Phys. 101: 114302 (3pp).
Risbud,
S.H. Liu, L-C. & Shakelford, J.F. 1993. Synthesis and luminescence of
silicon remnants formed by truncated glassmelt-particle reaction. Appl. Phys. Lett. 63:
1648-1650.
Saunders, W.A. Sercel, P.C. Lee,
R.B. Atwater, H.A. Vahala, K.J. Flagan, R.C. & Escorcia- Aparcio, E.J.
1993. Synthesis of luminescent silicon nanoclusters by spark ablation. Appl.
Phys. Lett. 63: 1549-1551.
Sweryda-Krawiec B. Cassagneau, T.
& Fendler, J.H. 1999a. Ultrathin Electroactive Junctions Assembled from
Silicon Nanocrystallites and Polypyrrole. Adv Mater. 11 (Comm.):
659-664.
Sweryda-Krawiec, B. Cassagneau, T.
& Fendler, J.H. 1999b. Surface Modification of Silicon Nanocrystallites by
Alcohols. J. Phys. Chem. B. 103: 9524-9529.
Swihart, M.T. Li, X. He, Y. Kirkey,
W. Cartwright, A.N. Sahoo, Y. & Prasad, P.N. 2003. High-Rate Synthesis and
Characterization of Brightly Luminescent Silicon Nanoparticles with
Applications in Hybrid Materials for Photonics and Biophotonics. Proc. of
SPIE-The International Society for Optical Engineering. 5222: 108-117.
Yamani, Z. Thompson, W.H. Abuhassan,
L.H. & Nayfeh, M.H. 1997. Ideal anodization of silicon. Appl. Phys.
Lett. 70: 3404-3406.
Yoshida, T. Takeyama, S. Yamada, Y.
& Mutoh, K. 1996. Nanometer-sized siliconcrystallites prepared by excimer laser
ablation in constant pressure inert gas. Appl. Phys. Lett. 68:
1772-1774.
Zhang X., Neiner D., Wang S., Louie
A. Y., & Kauzlarich S. M. 2007. A new solution route to hydrogen-terminated
silicon nanoparticles: synthesis, functionalization and water stability. Nanotechnology 18: 095601 (6pp).
Zhu, J.G. White, C.W. Budai, J.D.
Withrow, S.P. & Chen, Y. 1995. Growth of Ge, Si, and SiGe nanocrystals in
SiO2 matrices. J.
Appl. Phys. 78: 4386-4389.
Zhu, Y. Wang, H. & Ong, P.P.
2000. Strong and stable photoluminescence from sputtered silicon nanoparticles. J. Phys. D: Appl. Phys. 33: 1965-1968.
*Pengarang untuk surat-menyurat; email:
L.abuhassan@ju.edu.jo
|