Sains Malaysiana 39(5)(2010):
845–850
LQ-moments:
Parameter Estimation for Kappa Distribution
(LQ-momen:
Anggaran Parameter untuk Taburan Kappa)
Ani
Shabri*
Department
of Mathematics, Universiti Teknologi Malaysia 81300 Johor, Malaysia
Abdul
Aziz Jemain
School
of Mathematical Sciences, Universiti Kebangsaan Malaysia
43600
Bangi, Selangor Malaysia
Diserahkan:
13 Ogos 2009 / Diterima: 21 Mac 2010
ABSTRACT
Identification
of the true statistical distributions for various hydrologic data sets is a
major problem facing engineers. The four-parameter kappa distribution is a
combination of the established distribution including the Generalised Extreme
Value (GEV),
Generalised Logistic (GL),
Generalised Pareto (GP)
and the Gumbel distribution were considered in this study. The main objective
of this study was to develop the method of LQ-moments
for the kappa distribution. The performance of the LQ-moments
was compared with L-moments through eight problems using published data sets.
The results show that the performance of both methods, the LQ-moments
and L-moments worked equally well.
Keywords:
Kappa distribution; kernel quantile; L-moments; LQ-moments
ABSTRAK
Mengenalpasti
taburan yang sebenar untuk pelbagi set data hidrologi merupakan masalah utama
yangdihadapi oleh jurutera. Taburan kappa empat parameter adalah gabungan
taburan yang terkenal termasuk taburan GEV, GL, GP danGumbel dipertimbangkan dalam kajian
ini. Objektif utama kajian ini adalah untuk membangunkan kaedah LQ-momen
untuk taburan kappa. Keupayaan kaedah LQ-momen
dibandingkan dengan kaedah L-momen melalui lapan contoh permasalahan
menggunakan set data yang telah diterbitkan. Hasil kajian menunjukkan keupayaan
kaedah LQ-momen
adalah sama dengan kaedah LQ-momen.
Kata
kunci: Kuantil kernel; L-momen; LQ-momen;
taburan kappa
RUJUKAN
Ahmad
M.I., Sinclair C.D. & Werritty A. 1988. Log-Logistic flood frequency
analysis. Journal of Hydrology 98: 205-224.
Ani
S,A.A. Jemain. 2006. LQ-moments: application to the Extreme Value Type I
distribution. Journal of Applied Sciences 6(5): 993-997.
Haktanir
T. 1997. Self-determined probability-weighted moments method and its
application to various distributions. Journal of Hydrology 194:
180-200.
Hosking
J.R.M. 1990. L-moments: Analysis and estimation of distribution using linear
combinations of order statistics. J. Roy. Statist. Se. B. 52:
105-124.
Hosking
J.R.M. 1994. The four-parameter Kappa distribution. IBM J. Res. Dev.
38(3): 251-258.
Hosking
J.R.M. 1999. LMOMENTS: Fortran routines for L-moment computations and regional
frequency analysis,Version 3.02.
Mudholkar
G.S, Hutson A.D. 1998. LQ-moments: analogs of L-momentsents. Journal of
Statistical Planning and Inference 71: 191-208.
Parida
B.P. 1999. Modelling of Indian summer monsoon rainfall using a four-parameter
Kappa distribution. Int. Journal Climate 19: 1389-1398.
Park
J.S, Jung H.S. 2002a. Modelling Korea extreme rainfall using a Kappa
distribution and maximum likelihood estimate. Theor. Appl. Climatol 72:
55-64.
Park
J.S, Park B.J. 2002. Maximum likelihood estimation of the four-parameter Kappa
distribution using the penalty method. Computers & Geosciences 28:
65-68.
Sheather
S.J, Marron J.S. 1990. Kernel quantile estimators. Journal of the American
Statistical Association 85: 410-416.
Singh
V.P, Asce F, Deng Z.Q. 2003. Entropy-based parameter estimation for Kappa
distribution. Journal of Hydrologic Engineering 8(2): 81-92.
Song
D, Ding J. 1988. The application of probability weighted moments in estimating
the parameters of the Pearson type three distribution. Journal of Hydrology 101:
47-61.
Wan
Zin W.Z., Jemain, A.A. & Ibrahim K. 2009. The best fitting distribution of
annual maximum rainfall in Peninsular Malaysia based on method of L-moment and
LQ-moment. Theoretical and Applied Climatology 96(3-4): 337-344
Xiao
Y.Q, Li Q.S, Li Z.N, Chow Y.W. & Li G.Q. 2006. Probability distribution of
extreme wind speed and its occurrence interval. Engineering Structures 28:
1173-1181.
*Pengarang
untuk surat-menyurat; email: ani@utm.my