Sains Malaysiana 39(6)(2010): 999–1006

Effect of Copper Addition on Grain Refinement of Austenite in Fe-8wt.%Ni-(0-3)wt.%Cu Alloy

(Kesan Penambahan Kuprum terhadap Pengecilan Butiran  Austenit di dalam Aloi Fe-8%bt.Ni-(0-3)%bt.Cu)

 

Junaidi Syarif* & Zainuddin Sajuri

Department of Mechanical and Materials Engineering

Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor, Malaysia

 

Diserahkan: 16 September 2009 / Diterima: 10 Mac 2010

 

ABSTRACT

 

The effect of copper addition on martensitic structure and reversion from martensite to austenite behaviours upon heating were investigated to clarify mechanism of grain refinement of austenite in Fe-8wt.%Ni-Cu alloys. Upon water-quenching, the alloys underwent a martensitic transformation that exhibited a typical lath-martensitic structure. It was found that prior-austenite grain and martensite-packet sizes were refined with increasing copper content. The grain refinement was not due to a decrease of grain growth rate of the austenite. However, it was found that nucleation rate of the austenite on reversion was increased by the copper addition. In Fe-8wt.%Ni alloy heated in (austenite+ferrite) region, reversed austenite grains were formed at high angle boundaries such as prior austenite grain boundary and packet boundary. On the other hand, TEM observation of the Fe-8wt.%Ni-3wt.%Cu alloy revealed that fine copper particles precipitated within the martensitic structure and the reversed austenite grains also formed within lath-structures and lath boundary. It means that the copper addition promoted formation of the reversed austenite within martensitic matrix and resulted in the grain refinement of the prior-austenite in Fe-8wt.%Ni-Cu alloy.

 

Keyword: Austenite grain; copper addition; grain refinement; refinement martensitic steel; martensitic-austenitic reversion

 

ABSTRAK

 

Kesan penambahan kuprum terhadap struktur martensit dan pemendakan butiran kuprum serta kelakuan kebalikan daripada martensit kepada austenit pada pemanasan telah dikaji untuk mengenalpasti mekanisme pengecilan butiran austenit di dalam aloi Fe-8%bt.Ni-Cu. Selepas proses lindap kejut air dilakukan, berlaku penjelmaan martensit pada aloi berkenaan yang dibuktikan melalui kewujudan struktur lazim martensit berbilah. Butiran austenit-terdahulu dan saiz martensit-paket menjadi kecil dengan penambahan kandungan kuprum. Pengecilan butiran bukan disebabkan oleh penurunan kadar pertumbuhan butiran austenit. Sebaliknya, kadar penukleusan austenit daripada proses kebalikan meningkat dengan penambahan kuprum. Untuk aloi Fe8%bt.Ni yang dipanaskan di dalam kawasan fasa-duaan (austenit+ferit), butiran austenit berbalik terhasil pada sempadan sudut tinggi seperti sempadan butiran austenit-terdahulu dan sempadan paket. Daripada sudut yang lain, pencerapan TEM terhadap aloi Fe-8%bt.Ni-3%bt. Cu memperlihatkan butiran halus kuprum termendak di dalam struktur martensit dan butiran austenit berbalik juga terhasil di dalam dan di antara sempadan bilah martensit. Penambahan kuprum memberi kesan kepada pembentukan austenit berbalik di dalam matriks martensit, dan menyebabkan pengecilan butiran austenit-terdahulu pada aloi Fe-8%bt.Ni-Cu.

 

Kata kunci: Butiran austenit; kebalikan martensit-austenit; keluli martensit; penambahan kuprum; pengecilan butiran

 

RUJUKAN

 

Burke, J.E. & Turnbull, D. 1952. Recrystallization and Grain Growth. Prog. in Met. Phys. 3: 220-244.

Deschamps, A., Militzer M. & Poole, W.J. 2001. Precipitation kinetics and strengthening of a Fe-0.8wt%Cu alloy, ISIJ International 41: 196-205.

Futamura, Y., Tsuchiyama, T. & Takaki, S. 1999. Effect of Cu addition on phase transformation and microstructure in 9 mass% Cr martensitic steels. Tetsu- to-HaganŽ 85: 697-702.

Honeycombe, R.W.K & Bhadeshia, H.K.D.H. 1995. Steels: Microstructure and Properties. London: Edward Arnold.

Hornbogen, E. & Glenn, R.C. 1960. A metallographic study of precipitation of copper from alpha iron. Trans. AIME. 218: 1064-1070.

Kim, H.J., Kim, Y.H. & Morris Jr, J.W. 1998. Thermal mechanisms of grain and packet refinement in a lath martensitic steel. ISIJ International 38: 1277-1285.

Kimura, Y. & Takaki, S. 1997. Phase transformation mechanism of Fe-Cu alloys, ISIJ International 37: 290-295.

Krauss, G. 1990. Steel Heat Treatment and Processing Principles, Materials Park (OH): ASM International.

Krauss, G., 1999. Martensite in steel: Strength and structure, Materials Sci. & Eng. A273-275: 41-57.

Morito, S., Tanaka, H., Konishi, R., Furuhara, T. & Maki T. 2003. The morphology and crystallography of lath martensite in Fe-C alloys, Acta Materialia 51: 1789-1799.

Moser, A. & Legat, A. 1969. Calculation of hardenability from composition. Haerterei-Technische Mitteilungen 24: 100-105.

Nakashima, K., Futamura, Y., Tsuchiyama, T. & Takaki, S. 2002. Interaction between dislocation and copper particles in Fe-Cu alloys. ISIJ International 42: 1541-1545.

Salter, W.J.M. 1966. Effects of alloying elements on solubility and surface energy of copper in mild steel. J.Iron and Steel Inst. 204: 478-488.

Syarif, J., Hoshino, T., Tsuchiyama, T. & Takaki, S. 2000. Effect of solute copper on hardness and ductile-to-brittle transition in α-iron. Tetsu- to-HaganŽ 86: 558-562.

Takaki, S., Fukunaga, K., Syarif, J. & Tsuchiyama, T. 2004. Effect of grain refinement on thermal stability of metastable austenitic steel. Materials Trans. 45: 2245-2251.

Tsuchiyama, T. & Takaki, S. 1998. Formation of reversed austenite from M23C6 type High Chromium Martensitic Steel, Proceeding of the Third Pacific Rim International Conference on Advanced Materials and Processing (PRICM3). 1: 1187-1192.

Vander Voort, G.F. 2007. Metallography, Principles and Practice. Ohio: ASM International.

 

*Pengarang untuk surat-menyurat; email: syarif@eng.ukm.my

 

 

 

sebelumnya