Sains Malaysiana 40(4)(2011): 331–337
Cloning and Analysis of pyrG Gene
Encoding Orotidine 5-Monophosphate Decarboxylase of Aspergillus oryzae Strain
S1
(Pengklonan dan Analisis Gen pyrG yang Mengekodkan
Orotidina 5-monofosfat Dekarboksilase Aspergillus oryzae)
Selina Oh Siew Ling1, Leong Jiun Min1, Abdul Munir Abdul Murad1, Nor Muhammad Mahadi2 & Farah Diba Abu Bakar1 *
1School of BioSciences and Biotechnology, Faculty of Science and Technology
43600
Bangi, Selangor D.E., Malaysia
2Malaysia Genome Insitute, Helix
Emas Block
UKM-MTDC
Smart Technology Centre, Universiti Kebangsaan Malaysia
43600
Bangi, Selangor D.E., Malaysia
Diserahkan:
9 Disember 2009 / Diterima: 15 Julai 2010
ABSTRACT
In this study, the pyrG gene which encodes for orotidine
5-monophosphate decarboxylase (OMP decarboxylase) of
Aspergillus oryzae strain S1 was cloned and analysed. This 1.8kb A. oryzae pyrG
encompasses the 5’-regulatory flanking region (465 bp), open reading frame (899
bp) and 3’-regulatory region (475 bp). The pyrG contained one intron at
position 623-687 bp based on the AUGUSTUS and FGENESH (SoftBerry)
analysis corresponding to the intron present in the pyrG of A. oryzae
(Accession Number: Y13811). In silico analysis showed that the enzyme encoded
by the A. oryzae S1 pyrG gene has a theoretical molecular weight of 30.28 kDa
and theoretical pI value of 5.92. This enzyme is hydrophilic, located in a
region outside of the transmembrane and it functions in the cytoplasm. Five
motives such as N-glycosylation site, protein kinase C (PKC)
phosphorylation site, casein kinase II (CK-2) phosphorylation site,
N-myristolation site and orotidine 5-monophoshate decarboxylase active site
have been identified in the pyrG amino acid sequence. The three dimensional
structure of this enzyme generated via protein homology modeling using the
bioinformatic software, Swiss Model, shows that OMP decarboxylase
is a protein with an α/ß barrel structure possessing 8 ß-strands
surrounded by 9 α-helices. The amino acid residues involved in the active
site have been identified and it is located on one of the ß-strands. The pyrG DNA sequence
will be used for the complementation of a pyrG auxotroph mutant of A. oryzae.
Keywords: Aspergillus oryzae; orotidine 5-monophosphate
dehydrogenase; pyrG
ABSTRAK
Dalam kajian ini, gen pyrG yang mengekod orotidina 5-monofosfat
dekarboksilase (OMP dekarboksilase) Aspergillus oryzae
strain S1 telah diklon dan dianalisis. Gen pyrG ~1.8 kb A. oryzae ini
merangkumi kawasan pengawalaturan 5’ (465 pb), rangka bacaan terbuka (899 pb)
dan kawasan pengawalaturan 3’ (475 pb). Gen pyrG ini mempunyai satu intron pada
kedudukan 623-687 pb berdasarkan kepada analisis AUGUSTUS dan FGENESH (SoftBerry) bersamaan dengan kedudukan intron yang hadir dalam
gen pyrG A. oryzae (Nombor Aksesi: Y13811). Analisis in silico menunjukkan
bahawa enzim yang dikodkan oleh pyrG A. oryzae strain S1 mempunyai berat
molekul teori sebanyak 30.28 kDa dan nilai pI teori bernilai 5.92. Enzim ini
bersifat hidrofilik, berada di kawasan luar transmembran dan ia berfungsi di
dalam sitoplasma sel. Lima motif telah dikenalpasti dalam jujukan asid amino
pyrG iaitu tapak N-glikosilasi, tapak pemfosfatan protein kinase C (PKC),
tapak pemfosfatan kasein kinase II (CK-2), tapak N-Miristolasi dan tapak aktif
orotidina 5-monofosfat dekarboksilase. Struktur tiga dimensi enzim ini yang
dijanakan menggunakan pendekatan pemodelan homologi protein melalui perisian
bioinformatik Swiss Model menunjukkan bahawa OMP dekarboksilase
adalah protein yang mempunyai struktur α/ß barrel dengan 8 kepingan
struktur ß yang dikelilingi oleh 9 struktur heliks. Residu asid amino yang
terlibat dalam tapak aktif telah dikenalpasti dan ia berada pada salah satu
daripada kepingan struktur ß protein tersebut. Jujukan DNA pyrG
ini akan digunakan untuk mengkomplementasikan mutan auksotrof pyrG A. oryzae.
Kata kunci:
Aspergillus oryzae; orotidina 5-monofosfat dehidrogenase; pyrG
RUJUKAN
Arnold, K., Bordoli, L., Kopp, J. &
Schwede, T. 2006. The SWISS-MODEL Workspace: A web-based environment for
protein structure homology modelling. Bioinformatics 22: 195-201.
Bairoch, A., Bucher, P. & Hofmann,
K. 1997. The PROSITE database. Nucleic Acids Res. 25(1): 217-221.
Boeke, J.D., Lacroute, F. & Fink,
G.R. 1984. A positive selection for mutants lacking orotidine-5’-phosphate
decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen
Genet 197: 345-346.
Gellison, G. 2005. Production of
recombinant protein. Novel Microbial and Eucaryotic Expression System.
Wiley-VCHVerlag GmbH & Co. KGaA: Weinheim
Hiller, K., Schobert, M., Hundertmark,
C., Jahn, D. & Münch, R. 2003. JVirGel: calculation of virtual two
dimensional protein gels. Nucleic Acids Res. 31: 3862-3865.
Jacquet, M., Guilbaud, R. & Garreau,
H. 1988. Sequence analysis of the DdPYR5-6 gene coding for UMP synthase in Dictyostelium
discoideum and comparison with orotate phosphoribosyl transferases and OMP
decarboxylases. Mol. Gen. Genet. 211: 441-445.
Kobayashi, T., Abe, K., Asai, K., Gomi,
K., Juvvadi, P.R., Kato, M., Kitamoto, K., Takeuchi, M. & Machida, M. 2007.
Genomics of Aspergillus oryzae. Biosci. Biotechnol. Biochem. 71:
646-670.
Kyte, J. & Doolittle, R.F. 1982.
Amino acid scale: hydropathicity. J. Mol. Biol. 157: 105-132.
Long, H., Wang, T.H. & Zhang, Y.K.
2008. Isolation of Trichoderma reesei pyrG Negative Mutant by UV
Mutagenesis and Its Application in Transformation. Chem. Res. Chin. Univ.
24(5): 565-569.
Machida, M., Asai, K., Sano, M., Tanaka,
T., Kumagai, T., Terai, G., Kusumoto, K., Arima, T., Akita, O., Kashiwagi, Y.,
Abe, K., Gomi, K., Horiuchi, H., Kitamoto, K., Kobayashi, T., Takeuchi, M.,
Denning, D.W., Galagan, J.E., Nierman, W.C., Yu, J., Archer, D.B., Bennett,
J.W., Bhatnagar, D., Cleveland, T.E., Fedorova, N.D., Gotoh, O., Horikawa, H.,
Hosoyama, A., Ichinomiya, M., Igarashi, R., Iwashita, K., Juvvadi, P.R., Kato,
M., Kato, Y., Kin, T., Kokubun, A., Maeda, H., Maeyama, N., Maruyama, J.,
Nagasaki, H., Nakajima, T., Oda, K., Okada, K., Paulsen, I., Sakamoto, K.,
Sawano, T., Takahashi, M., Takase, K., Terabayashi, Y., Wortman, J.R., Yamada,
O., Yamagata, Y., Anazawa, H., Hata, Y., Koide, Y., Komori, T., Koyama, Y.,
Minetoki, T., Suharnan, S., Tanaka, A., Isono, K., Kuhara, S., Ogasawara, N.
& Kikuchi, H. 2005. Genome sequencing and analysis of Aspergillus oryzae. Nature 438: 1157-1161.
Mattern, I.E., Unkles, S.E., Kinghorn,
J.R., Pouwels, P.H. & van den Hondel C.A.M.J.J. 1987. Transformation of Aspergillus
oryzae using the Aspergillus niger pyrG gene. Mol. Gen. Genet.
210: 460-461.
Nielsen, H., Engelbrecht, J., Brunak, S.
& von Heijne, G. 1997. Identification of prokaryotic and eukaryotic signal
peptides and prediction of their cleavage sites. Protein Eng. 10: 1-6.
Pich, U. & Schubert, I. 1993.
Mediprep method for isolation of DNA from plant samples with a high content of
polyphenolics. Nucleic Acids Res. 21: 3328.
Stanke, M., Steinkamp, R., Waack, S.
& Morgenstern, B. 2004. “AUGUSTUS: a web server for gene finding in
eukaryotes” Nucleic Acids Res. 32: 309-312.
Ward, O.P., Qin,
W.M., Dhanjoon, J., Ye, J. & Singh, A. 2006. Physiology and Biotechnology
of Aspergillus. Advances in Applied Microbiology 58: 1-75.
Yolanda, M.J.T., de
Ruiter-Jacobs, Martien, B. & Unkles, S.E. 1989. A gene transfer system
based on the homologous pyrG gene and efficient expression of bacterial
genes in Aspergillus oryzae. Current Genetics 16: 159-163.
*Pengarang untuk
surat-menyurat; email: fabyff@ukm.my
|