Sains Malaysiana 40(4)(2011): 373–378

 

Mechanical and Thermal Properties of Palm-Based Polyurethane  Composites Filled with Fe3O4, PANI and PANI/Fe3O4

 

(Sifat-sifat Mekanik dan Terma Komposit Poliuretana Sawit Berpengisi Fe3O4, PANI dan PANI/Fe3O4)

 

Liow Chi Hao1, Khairiah Haji Badri2 * & Sahrim Haji Ahmad1

 

1School of Applied Physics, Faculty of Science & Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia

 

2School of Chemical Sciences & Food Technology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia

 

Diserahkan: 7 Januari 2010 / Diterima: 21 Jun 2010

 

ABSTRACT

 

In-situ polymerization method was used to prepare palm-based polyurethane (PU) composites loading with 15 wt% magnetite (Fe3O4), polyaniline (PANI) and Fe3O4 coated with PANI labeled as PU15, PP and PPM, respectively. FTIR spectroscopy analysis indicated a shift in the carbonyl, C=O and NH in PP. The shift of the peak indicated that there was hydrogen bonding between the C=O (proton acceptor) of urethane with NH (proton-donator) of PANI. PPM gave the highest impact and flexural strengths at 4875 kJ/ m2 and 42 MPa, respectively but with the lowest flexural modulus (1050 MPa). Two-stage degradation behavior was observed in the TGA thermogram.

 

Keywords: Magnetite; mechanical properties; polyaniline; polyurethane; thermal property

 

ABSTRAK

 

Kaedah pempolimeran in-situ digunakan untuk menyediakan komposit poliuretana sawit (PU) dengan penambahan 15% bt. magnetit (Fe3O4), polianilina (PANI) dan Fe3O4 tersalut PANI berlabel masing-masing PU15, PP dan PPM. Analisis spektroskopi FTIR menunjukkan terdapat anjakan pada puncak karbonil C=O dan NH dalam PP. Anjakan puncak ini menunjukkan kehadiran ikatan hidrogen antara C=O (penerima proton) daripada uretana dan NH (penderma proton) daripada PANI. PPM memberikan kekuatan hentaman dan lenturan tertinggi pada masing-masing 4875 kJ/ m2 dan 42 MPa tetapi dengan modulus lenturan terendah (1050 MPa). Peleraian dua peringkat diperhatikan dalam termogram TGA.

 

Kata kunci: Magnetit; polianilina; poliuretana; sifat mekanik; sifat terma

 

RUJUKAN

 

Badri, K.H., Ahmad, S.H. & Zakaria, S. 2001. Production of a high-functionality RBD palm kernel oil-based polyester polyol. Journal of Applied Polymer Science 81: 384-389.

Badri, K.H., Khairul, A.M.A., Zulkefly, O., Hairani, A.M. & Nur, K.K. 2006. Effect of filler-to-matrix blending ratio on the mechanical strength of palm-based biocomposite boards. Polymer International 55: 190-195.

Chattopadhyay, D.K., Mishra, A.K., Sreedhar, B. & Raju, K.V.S.N. 2006. Thermal and viscoelastic properties of polyurethane-imide/clay hybrid coatings. Polymer Degradation and Stability 91: 1837-1849.

Ding, X.F., Han, D.X., Wang, Z.J., Xu, X.Y., Niu, L. & Zhang, Q. 2008. Micelle-assity processed synthesis of polyaniline/ magnetite nanorod by in situ self-assemblement. Journal of Colloid and Interface Science 320: 341-345.

Ho, K.S., Hsieh, K.H., Huang, S.K. & Hsieh, T.H. 1999. Polyurethane-based conducting polymer blends I. Effect of chain extender. Journal of Synthetic Metals 107: 65-73.

Judeinstein, P. & Sanchez, C. 1996. Hybrid organic-inorganic materials: A land of multidisciplinarity. Journal of Materials Chemistry 6: 511-525.

Kazantseva, N.E., Vilcáková, J., Kresálek, V., Sáha, P., Sapurina, I. & Stejskal, J. 2004. Magnetic behaviour of composites containing polyaniline-coated manganese-zinc ferrite. Journal of Magnetism and Magnetic Materials 269: 30-37.

Khairul, A.M.A. & Badri, K.H. 2007. Palm-based bio-composites hybridized with kaolinite. Journal of Applied Polymer Science 105: 2488-2496.

Khalid, M., Ratnam, C.T., Chuah, T.G., Ali, S. & Choong, T.S.Y. 2008. Comparative study of polypropylene composites reinforced with oil palm empty fruit bunch fiber and oil palm derived cellulose. Materials & Design 29: 173-178.

Kong, L., Lu, X. & Zhang, W. 2008. Facile synthesis of multifunctional multiwalled carbon nanotubes/Fe3O4 nanoparticles/polyaniline composite nanotubes. Journal of Solid State Chemistry 181: 628-636.

Li, G.-y., Jiang, Y.-r., Huang, K.-l., Ding, P. & Chen, J. 2008. Preparation and properties of magnetic Fe3O4-chitosan nanoparticles. Journal of Alloys and Compounds 466: 451-456.

Malinauskas, A. 2001. Chemical deposition of conductiong polymer. Journal of Polymer 42: 3957-3972.

Mythili, C.V., Retna, A.M. & Gopalakrishnan, S. 2004. Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol. Journal of Indian Academy of Sciences 27: 235-241.

Ravat, B., Grivet, M., Grohens, Y. & Chambaudet, A. 2001. Electron irradiation of polyesterurethane: study of chemical and structural modifications using FTIR, UV spectroscopy and GPC. Radiation Measurements 34: 31-36.

Sapurina, I., Osadchev, A.Y., Volchek, B.Z., Trchova, M., Riede, A. & Stejskal, J. 2002. In-situ polymerized polyaniline films 5. brush-like chain ordering. Journal of Snythetic Metals 129: 29-37.

Saujanya, C. & Radhakrishnan, S. 2000. Structure and properties of PP/CaSO4 composite. Part III: Effect of the filler grade on properties. Journal of Materials Science 35: 2319-2323.

Sreekala, M.S., Jayamol, G., Kumaran, M.G. & Thomas, S. 2002. The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibers. Composites Science and Technology 62: 339-353.

Tsotra, P. & Friedrich, K. 2004. Thermal, mechanical, and electrical properties of epoxy resin/polyaniline-dodecylbenzenesulfonic acid blends. Synthetic Metals 143: 237-242.

Weidenfeller, B., Höfer, M. & Schilling, F. 2002. Thermal and electrical properties of magnetite filled polymers. Composites Part A: Applied Science and Manufacturing 33: 1041-1053.

Wilson, S.A., Jourdain, R.P. J., Zhang, Q., Dorey, R.A., Bowen, C.R., Willander, M., Wahab, Q.U., Al-hilli, S.M., Nur, O., Quandt, E., Johansson, C., Pagounis, E., Kohl, M., Matovic, J., Samel, B., van der Wijngaart, W., Jager, E.W.H., Carlsson, D., Djinovic, Z., Wegener, M., Moldovan, C., Iosub, R., Abad, E., Wendlandt, M., Rusu, C. & Persson, K. 2007. New materials for micro-scale sensors and actuators: An engineering review. Materials Science and Engineering: R: Reports 56: 1-129.

Zhang, J., Li, L., Chen, G. & Wee, P. 2009. Influence of iron content on thermal stability of magnetic polyurethane foams. Polymer Degradation and Stability 94: 246-252.

 

*Pengarang untuk surat-menyurat; email: kaybadri@ukm.my

 

 

sebelumnya