Sains Malaysiana 40(7)(2011): 737–742

 

Loading Effect of Aluminum Hydroxide onto the Mechanical, Thermal Conductivity, Acoustical and Burning Properties of the Palm-based Polyurethane Composites

(Kesan Penambahan Aluminum Hidroksida ke atas Sifat Mekanik, Kekonduksian Terma, Akustik dan Kebakaran Komposit Poliuretana Sawit)

 

Nor Rabbi’atul ‘Adawiyah Norzali & Khairiah Haji Badri*

School of Chemical Science and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. Malaysia

 

Khairiah Haji Badri*

Polymer Research Centre, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. Malaysia

 

Mohd Zaki Nuawi

Department of Mechanical and Materials Engineering

Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor D.E., Malaysia

 

Diserahkan: 23 Oktober 2009 / Diterima: 28 Oktober 2010

 

 

ABSTRACT

 

Effects of aluminium hydroxide (ATH) addition on the properties of palm-based polyurethane composites were investigated. The hybrid composites were prepared by mixing 10 wt% of oil palm empty fruit bunch fiber (EFB) with ATH at varying amount of 2, 4 and 6 wt% of the overall mass of the resin. The compression stress and modulus gave the highest values of 575 and 2301 kPa, respectively at 2 wt% loading of ATH. The compression stress and modulus decreased drastically at 4 wt% (431 kPa and 1659 kPa, respectively) and further decreased at 6 wt% ATH (339 and 1468 kPa, respectively). However, the burning rate is inversely proportional to the loading percentage where the highest burning rate was observed at 2 wt% ATH. Sound absorption analysis indicated a large absorption coefficient at high frequency (4000 Hz) for all samples. The highest absorption coefficient was obtained from PU-EFB/ATH with 4 wt% ATH.

 

Keywords: Acoustic property; aluminum hydroxide; burning property; mechanical property; polyurethane composites

 

ABSTRAK

 

Kesan penambahan aluminium hidroksida (ATH) terhadap sifat komposit hibrid poliuretana (PU) berasaskan sawit telah dikaji. Komposit hibrid PU disediakan dengan menambahkan 10% mengikut berat serabut tandan kosong kelapa sawit (EFB) diikuti dengan penambahan ATH pada peratus penambahan divariasikan pada 2, 4 dan 6% mengikut berat keseluruhan resin. Tegasan dan modulus mampatan adalah pada nilai tertinggi pada penambahan 2% ATH iaitu masing-masing 338 kPa dan 2209 kPa. Pada 4% ATH, tegasan dan modulus mampatan menurun kepada masing-masing 431 dan 1659 kPa dan semakin menurun dengan penambahan 6% ATH kepada masing-masing 379 dan 1468 kPa. Walau bagaimanapun, kadar kebakaran adalah berkadar songsang dengan peratus pengisian dengan kadar pembakaran tertinggi berlaku pada 2%bt ATH. Analisis serapan bunyi menunjukkan pekali serapan yang tinggi pada frekuensi tinggi (4000 Hz) untuk semua sampel dengan PU-EFB/ATH (4% ATH) menunjukkan pekali serapan tertinggi.

Kata kunci: Aluminum hidroksida; komposit poliuretana; sifat akustik; sifat kebolehbakaran; sifat mekanik

 

RUJUKAN

 

Ahmad Ramazani, S.A., Rahimi, A., Frounchi, M. & Radman, S. 2008. Investigation of flame retardancy and physical-mechanical properties of zinc borate and aluminum hydroxide propylene composites. Materials and Design 29(5): 1051-1056.

Almeida Pinto, U., Visconte, L.L.Y., Gallo, J. & Nunes, R.C.R. 2000. Flame retardancy in Thermoplastic Polyurethane elastomers (TPU) with Mica and Aluminum Trihydrate (ATH). Polymer Degradation and Stability 69(3): 257-260.

Aranguren, M.I., Racz, I. & Marcovich, N.E. 2007. Microfoams based on castor oil polyurethanes and vegetable fibres. Journal of Applied Polymer Science 105: 2791-2800.

Badri, K.H., Ahmad, S.H. & Zakaria, S. 2000. Development of zero ODP rigid polyurethane foam from RBD palm kernel oil. Journal of Materials Science Letters 19(15): 1355- 1356.

Badri, K.H., Ahmad, S.H. & Zakaria, S. 2001. The production of a high-functionality RBD palm kernel-based polyester polyol. Journal of Applied Polymer Science 82: 827-832.

Badri, K.H., Othman, Z. & Ahmad, S.H. 2004. Rigid polyurethane foams from oil palm resources. Journal of Materials Science 39(16-17): 5541-5542.

Badri, K.H., Othman, Z. & Mohd Razali, I. 2005. Mechanical properties of polyurethane composites from oil palm resources. Iranian Polymer Journal 14 (5): 987-993

Benli, S., Yilmazer, Ü., Pekel, F., & Özkar, S. 1998. Effect of fillers on thermal and mechanical properties of polyurethane elastomer. Journal of Applied Polymer Science 68: 1057-1065.

Bonsignore, P. V. 1981. Alumina trihydarate as a flame retardant for polyurethane foams. In Frisch, K.C. and Klempner, D. (Ed.), In Advances in Urethane Science and Technology.8: 253-262. United States of America: Technomic Publishing Co. Inc.

Carme Coll Ferrer, M., Babb, D. & Ryan, A.J. 2008. Characterisation of polyurethane networks based on vegetable derived polyol. Polymer 49(15): 3279-3287.

Dvir, H., Gottlieb, M., Daren, S. & Tartakovsky, E. 2003. Optimization of a flame-retarded polypropylene composite. Composites Science and Technology 63: 1865-1875.

Haq, M., Burgueño, R., Mohanty, A.K. & Misra, M. 2008. Hybrid bio-based composites from blends of unsaturated polyester and soybean oil reinforced with nanoclay and natural fibres. Composites Science and Technology 68(15-16): 3344-3351.

Husic, S., Javni, I. & Petrovic, Z.S. 2005. Thermal and mechanical properties of glass reinforced soy-based polyurethane composites. Composites Science and Technology 65(1): 19-25.

Javni, I., Petrovic, Z.S., Guo, A. & Fuller, R. 2000. Thermal stability of polyurethanes based on vegetable oils. Journal of Applied Polymer Science 77(8): 1723-1734.

Khairul Anuar Mat Amin & Khairiah Haji Badri. 2007. Palm-based bio-composites hybridized with kaolinite. Journal of Applied Polymer Science 105: 2488-2496.

Kumluta, D., Tavman, I.H. & Coban, M.T. 2003. Thermal conductivity of particle filled polyethylene composite materials. Composites Science and Technology 63: 113-117.

Mansour, S.H. 2000. Polymeric composites containing alumina trihydrate and silica. Journal of Elastomers and Plastics 32(3): 248-264.

Modesti, M., Lorenzetti, A., Simioni, F. & Camino, G. 2002. Expandable graphite as an intumescent flame retardant in polyisocyanurate–polyurethane foams. Polymer Degradation and Stability 77: 195-202.

Nachtigall, S.M.B., Miotto, M., Schneider, E.E., Mauler, R.S. & Camargo Forte, M.M. 2006. Macromolecular coupling agents for flame retardant materials. European Polymer Journal 42: 990-999.

Rozman, H.D., Saad, M.J. & Mohd Ishak, Z.A. 2003. Flexural and impact properties of oil palm Empty Fruit Bunch (EFB)-Propylene composite-The effect of maleic anhydride chemical modification of EFB. Polymer Testing 22(3): 335-341.

Tanaka, R., Hirose, S. & Hatakeyama, H. 2008. Preparation and Characterization of polyurethane foams using a palm oil-based polyol. Bioresource Technology 99(9): 3810-3816.

Wu, C.-P., Lee, J.-S., & Liao, Y.-J. 2004. Thermal analysis of aluminium trihydroxide. In Proceedings of the NATAS Annual Conference on Thermal Analysis and Application, 79-85.

Zhou, H., Li, B. & Huang, G. 2006. Sound absorption characteristics of polymer microparticles. Journal of Applied Polymer Science 101: 2675-2679.

 

*Pengarang untuk surat-menyurat; email: kaybadri@ukm.my

 

 

sebelumnya