Sains Malaysiana 40(8)(2011): 853–864
Mapping of Faults in the Libyan Sirte Basin by
Magnetic Surveys
(Pemetaan Sesar dalam Lembangan Sirte
Libya dengan Survei Magnet)
A.S. Saheel*
Libyan Petroleum Institute-Tripoli-Libya
Abdul Rahim Bin Samsudin & Umar Bin Hamzah
School of Environment and Natural Resource Sciences, Faculty of Science
and Technology
Universiti Kebangsaan Malaysia , 43600 Bangi, Selangor, Malaysia
Diserahkan: 8 Februari 2010 / Diterima: 23 September 2010
ABSTRACT
Magnetic surveys were carried out in Farigh area which is located
in the eastern part of the Libyan Sirte basin. Interpretation of the onshore
magnetic anomaly of this area, suggests that the high total magnetization may
be caused by an intrusive body. Analysis of the magnetic power spectra
indicates the presence of four sub-anomalies at depths of 340 m, 1400 m, and
2525 m which is probably related to the igneous rocks. The presence of igneous
rock as basement at depth of 4740 m was confirmed by drilling. Assuming that
all rock magnetization in the area is caused by induction in the present
geomagnetic field, it strongly suggests that the causative structure has a
remnant magnetization of declination (D) = −16° and inclination (I) =
23°. Based on pseudogravity data, the total horizontal derivative map shows
high gradient values in NW-SW trends
related to the structures in the eastern part of the Sirte basin. The 3D Euler
deconvolution map derived from gravity data clearly indicates the location of
igneous body in the study area as well as its tectonic trends and depth, which
is estimated at 350 m to 1400 m below the surface. Depth of gravity anomalies
at 1400 m to 2525 m is considered as anomalies in between shallow and deep.
Anomaly at depth of approximately 4740 m below the surface is interpreted as
basement rock. Geologically, the magnetic survey shows that the source of
anomaly is a mafic igneous rock of Early Cretaceous age. The study also
discovered a left-lateral sheared fault zone along the NW-SE of
Hercynian age which was believed to be reactivated during Early Cretaceous.
Keywords: Deconvolution; fault zone; igneous bodies; magnetic
survey; rock magnetization
ABSTRAK
Survei magnet telah dijalankan di kawasan Farigh yang terletak di
bahagian timur lembangan Sirte di Libya. Pentafsiran yang dibuat ke atas data
anomali magnet yang diperoleh di daratan mencadangkan bahawa kemagnetan jumlah
yang tinggi mewakili satu jasad intrusi. Analisis data spectral kuasa
menunjukkan kehadiran empat subanomali yang terletak pada kedalaman 340, 1400
dan 2525 m yang juga dikaitkan dengan batuan igneus. Kehadiran batuan igneus
pada kedalaman 4740 m dibuktikan dengan data penggerudian. Jika sekiranya
kesemua kemagnetan batuan dihasilkan secara aruhan medan geomagnet semasa,
struktur penyebab kepada anomali magnet yang diukur mempunyai kemagnetan baki
bernilai deklinasi (D) = -16° dan inklinasi (I) = 23°. Berdasarkan data
pseudograviti, peta terbitan jumlah mengufuk menunjukkan kecerunan yang tinggi
pada arah barat laut-tenggara yang dikaitkan dengan struktur di bahagian timur
lembangan Sirte. Peta dekonvolusi Euler 3D yang dihasilkan daripada pada data
graviti menunjukkan dengan jelas lokasi jasad igneus di kawasan kajian serta
tren tektonik dengon kedalaman anomali yang dianggarkan terletak pada kedalaman
350 m dan 1400 m di bawah permukaan bumi. Anomali graviti pada kedalaman 1400 m
dan 2525 m dianggap mewakili anomali pada kedalaman pertengahan di antara
anomali cetek dan dalam. Anomali yang terletak pada kedalaman 4740 m di bawah
aras permukaan ditafsirkan sebagai mewakili batuan dasar. Berdasarkan fakta
geologi, survei magnet menunjukkan bahawa punca anomali merupakan batuan igneus
jenis mafik yang berusia Kapur Awal. Kajian juga dapat menemukan zon sesar
ricih jenis kekiri yang mempunyai tren barat laut – tenggara serta berusia
Hercynian yang diaktifkan semula pada zaman Kapur Awal.
Kata kunci: Dekonvolusi; jasad igneus; kemagnetan batuan; survei
magnet; zon sesar
RUJUKAN
Ahlbrandt, T.S. 2001. The Sirte Basin Province of
Libya: Sirte-Zelten Total Petroleum System. U.S. Geological Survey Bulletin 2202-F
(Version 1.0)
Bilim, F. 2007. Investigations into the tectonic
lineaments and thermal structure of Kutahya-Denizli region, western Anatolia,
from using aeromagnetic, gravity and seismological data. Physics of the
Earth and Planetary Interiors 165(3-4): 135-146.
Blakely, R.J. & Simpson, R.W. 1986. Locating edges
of source bodies from magnetic and gravity anomalies. Geophysics 51(7):
1494-1498.
Bournas, N., Galdeano, A., Hamoudi, M. & Baker, H.
2003. Interpretation of the aeromagnetic map of Eastern Hoggar (Algeria) using
the Euler deconvolution, analytic signal and local wavenumber methods. Journal
of African Earth Sciences 37(3-4): 191-205.
Chennouf, T., Khattach, D., Milhi, A., Andrieux, P.
& Keating, P. 2007. Major structural trends in northeastern Morocco: The
contribution of gravimetry. Comptes Rendus – Geoscience 339: 383-395.
Cordell, L. & Grauch, V.J.S. 1985. Mapping
basement magnetization zones from aeromagnetic data in the San Juan Basin, New
Mexico. In Hinze, W. J., Ed., The utility of regional gravity and magnetic
anomaly maps: Society of Exploration Geophysicists: 181-197.
Cordell, L. 1979. Gravimetric expression of graben
faulting in Santa Fe Country and the Espanola Basin, New Mexico, Guidebook
to the 30th Field Conference, Santa Fe Country, New Mexico Geological Society
(Ed), New Mexico Geological Society, Socorro: 59-64.
Corner, B. & Wilsher, W.A. 1989. Structure of the
Witwatersrand basin derived from interpretation of the aeromagnetic and gravity
data. In Garland, G. D., Ed., Proceedings of Exploration ’87, Third
Decennial International Conference on Geophysical and Geochemical Exploration
for Minerals and Groundwater: Ontario Geological Survey, Special 3:
532-546.
El-Hawat, A.S., Missallati, A.A, Bezan, A.M. &
Taleb, T.M. 1996. The Nubian Sandstone in Sirte Basin and its Correlatives. In:
Salem, AJ, El-Hawat, AS and AM Sbeta (Eds), The Geology of Sirt Basin. Amsterdam:
Elsevier, p. 3-30.
Fairhead, J.D., Bennet, K.J., Gordon, R.H. &
Huang, D. 1994. Euler: Beyond the Black Box. 64th Annual International
Meeting, Society of Exploration Geophysicists, Expanded Abstracts, pp.
422-424.
Geosoft Reference Manual 2009. Software for Earth
Sciences Geosoft INC., Toronto, Cana.
Goudarzi, G.H. 1980. Structure- Libya. In: Salem, MJ
and Buserwil, MI (editors). The Geology of Libya. 3: 879-892. London,
UK: Academic Press.
Gras, R. & Thusu, B. 1998. Trap architecture of
the Early Cretaceous Sarir Sandstone in the eastern Sirt Basin. In: Macgreor,
DS, Moody, RTJ and DD Clark-Lowes (eds), Petroleum Geology of North Africa. Geological
Society, London, Special Publication No:132: 317-334.
Guiraud, R. & Bosworth, W. 1997. Senonian basin
inversion and rejuvenation of rifting in Africa and Arabia: synthesis and
implications for plate scales tectonics. Tectonophysics 282: 39-82.
Hallet, D. 2002. Petroleum Geology of Libya.
487 pp, Elsevier, Amsterdam.
Huang, D., Gubbins, D., Clark, R.A. & Whaler, K.A.
1995. Combined study of Euler’s homogeneity equation for gravity and magnetic
field. 57th Conference and Technical Exhibition EAGE, Glasgow, Extended
Abstracts, P144.
Klitzsch, E.H. & Squyres, C.H. 1990. Paleozoic and
Mesozoic geological history ofnortheastern Africa based upon new interpretation
of Nubian Strata. The AAPG Bull. 74: 1203-1211.
Klitzsch, E. 1971. The structural development of part
of north Africa since Cambrian time. In: Gray, C(editor), First Symposium on
the Geology of Libya. Faculty of Science,University of Libya, pp. 253-262,
Tripoli.
Klingele, E.E., Marson I., & Kahle, H.G. 1991.
Automatic interpretation of gravity gradiometric data in two dimensions:
vertical gradient. Geophysical Prospecting 39: 407-434.
Tawadros, E, Rasul, S.M. & Elzaroug, E. 2001.
Petrography and palynology of quartzite in the Sirte Basin, central Libya. Jour.
African Earth Sciences 32: 373-390.
Li, C.-F., Zhou, Z., Hao, H., Chen, H., Wang, J.,
Chen, B. & Wu, J. 2008. Late Mesozoic tectonic structure and evolution
along the present-day northeastern South China Sea continental margin. Journal
of Asian Earth Sciences 31(4-6): 546-561.
Ma, Z.-J., Gao, X.-L. & Song, Z.-F. 2006. Analysis
and tectonic interpretation to the horizontal-gradient map calculated from
Bouguer gravity data in the China mainland. Chinese Journal of Geophysics
(Acta Geophysica Sinica) 49(1): 106-114.
Marson, I., & Klingele, E.E. 1993. Advantages of
using the vertical gradient of gravity for 3-D interpretation. Geophysics 58:
1588-1595.
Phillips, J.D. 1998. Processing and interpretation of
aeromagnetic data for the Santa Cruz Basin-Patahonia Mountains area,
South-Central Arizona. U.S. Geological Survey Open-File Report 02-98.
Pilkington, M. 2007. Locating geologic contacts with
magnitude transforms of magnetic data. Journal of Applied Geophysics 63(2):
80-89.
Reid, A.B. 2003. Short note: Euler magnetic structural
index of a thin-bed fault. Geophysics 68: 1255-1256.
Reid,
A.B., Allsop, J.M., Granser, H., Millet, A.J. & Somerton, I.W. 1990.
Magnetic interpretation in three dimensions using Euler Deconvolution. Geophysics 55: 80-91.
Reid, A.B., FitzGerald D. & McInerney P. 2003.
Euler Deconvolution of gravity data. Society of Exploration Geophysicists
(SEG), Annual Meeting, 2003, pp. 580-583.
Robertson, 1970. Geological study in the concession
12. Unpblished report.
Shepherd, T., Bamber, J.L. & Ferraccioli, F. 2006.
Subglacial geology in Coats Land, East Antarctica, revealed by airborne
magnetics and radar sounding. Earth and Planetar Science Letters 244(1-2):
323-335.
Thompson, D.T. 1982. EULDPH – A new technique for
making computer-assisted depth estimates from magnetic data. Geophysics 47:
31-37.
Van der Meer, F. & Cloetingh, C. 1993. Intraplate
stresses and subsidence history of the Sirte Basin (Libya). Tectonophysics v.
226: 37-58.
Wilsher, W.A. 1987. A structural interpretation of the
Witwatersrand basin through the application of the automated depth algorithms
to both gravity and aeromagnetic data. Thesis (MSc). University of
Witwatersrand. (Unpublished)
*Pengarang
untuk surat-menyurat; email: ahmedsaheel423@yahoo.com
|