Sains
Malaysiana 41(10)(2012): 1245–1251
Effects
of Titration Parameters on the Synthesis of Molybdenum Oxides Based Catalyst
(Kesan Parameter Penitratan terhadap Sintesis Mangkin Molibdenum
Oksida)
D.D. Suppiah*, F.A. Hamid, M.G. Kutty
& S.B. Abd. Hamid
Combinatorial Technology and Catalysis Research Centre
(COMBICAT)
Level 3, Blok A, Institute of Postgraduate Studies,
University Malaya
50603 Kuala Lumpur, Malaysia
Diserahkan: 11 Ogos 2011 / Diterima 4 Mei 2012
ABSTRACT
Molybdenum oxides catalysts are extensively used in various
selective oxidation reactions. In this work, controlled precipitation method
was used to synthesise molybdenum oxides. The effects of various titration
parameters on the precipitate growth rate and structure throughout catalyst
synthesis were investigated. The titration parameters varied for this study
were molybdates (ammonium heptamolybdate) concentration, precipitation agent
(HNO3) concentration, precipitating agent rate of addition
and temperature of synthesis. X-Ray diffraction (XRD)
and Field Emission Scanning Electron Microscope (FESEM)
were used to characterize the catalysts. This study highlights the
significant effects of the titration parameters varied on the supersaturation
of the solution therefore yielding precipitate with different morphology. It
was observed that the temperature played the major role followed by molybdate
concentration in the formation of the bulk catalyst. Supramolecular structure
(Mo36O112) was observed at lower temperature
(30ºC) and lower molybdate concentration (0.07 M, 0.10 M) while at higher
temperature (50ºC) and higher molybdate concentration(0.14
M) hexagonal (h-MoO3) phase structure was formed. Fast
rate of addition and high concentration of precipitating agent affected the
solution equilibrium leading to unclear inflection point (supersaturation
point) at the titration curve.
Keywords: Catalyst; molybdenum oxides; precipitation; titration
ABSTRAK
Mangkin molibdenum oksida digunakan secara
meluas dalam pelbagai tindak balas pengoksidaan terpilih. Kaedah pemendapan yang terkawal telah digunakan
dan pelbagai parameter penitratan telah digunakan seperti kepekatan molibdat
(ammonia heptamolybdate), kepekatan agen pemendapan (HNO3), kadar penambahan agen pemendapan dan suhu sintesis. Kesan
setiap parameter terhadap kadar pertumbuhan dan
struktur zarah semasa sintesis mangkin telah dikaji. Pembelauan
sinar-X (XRD) dan Mikroskop Pancaran Medan Elektron Imbasan (FESEM)
digunakan untuk mengenal pasti ciri-ciri mangkin. Berdasarkan
kajian yang telah dibuat, perkara utama yang perlu diberi perhatian adalah
kesan setiap parameter penitratan terhadap keterlarutan yang menghasilkan
pemendapan pepejal dengan morfologi berbeza. Suhu
memainkan peranan paling penting diikuti kepekatan molibdat dalam pembentukan
mangkin pukal. Struktur supramolekular (Mo36O112)
telah diperhatikan pada suhu rendah (30ºC) dan kepekatan molibdat rendah (0.07
M, 0.10 M) sedangkan pada suhu tinggi (50ºC) dan kepekatan molibdat tinggi
(0.14 M) struktur hexagonal (h-MoO3) telah dihasilkan. Kadar penambahan yang cepat dan kepekatan tinggi agen penitratan
mempengaruhi keseimbangan larutan dan mengakibatkan titik keterlarutan yang tak
jelas.
Kata kunci: Mangkin; molibdenum oksida;
pemendapan; penitratan
RUJUKAN
Abd Hamid, S.B., Othman,
D., Abdullah, N., Timpe, O., Knobl, S., Niemeyer, D., Wagner, J., Su, D. &
Schogl, R. 2003. Structurally
complex molybdenum oxide model catalysts for the selective oxidation of
propene. Topics in Catalysis 24(1): 87-95.
Behrens, M., Brennecke, D.,
Girgsdies, F., Kißner, S., Trunschke, A., Nasrudin, N., Zakaria, S., Idris,
N.F., Hamid, S.B.A., Kniep, B., Fischer, R., Busser, W., Muhler, M. &
Schlögl, R. 2011. Understanding the
complexity of a catalyst synthesis: Co-precipitation of mixed Cu,Zn,Al hydroxycarbonate precursors for Cu/ZnO/Al2O3
catalysts investigated by titration experiments. Applied Catalysis A:
General 392(1-2): 93-102.
Bohne, Y., Shevchenko, N., Prokert, F.,
von Borany, J., Rauschenbach, B. & Möller, W. 2005. In situ characterization of phase formation during high-energy
oxygen ion implantation in molybdenum. Nuclear Instruments and
Methods in Physics Research Section B: Beam Interactions with Materials and
Atoms 240(1-2): 157-161.
Cavalleri,
M., Hermann, K., Guimond, S., Romanyshyn, Y., Kuhlenbeck, H. & Freund, H.J.
2007. X-ray spectroscopic fingerprints of reactive oxygen sites at the MoO3(0 1 0) surface. Catalysis Today 124(1-2):
21-27.
Chang, Z., Song, Z., Liu, G., Rodriguez, J.A. & Hrbek,
J. 2002. Synthesis, electronic and chemical properties of MoOx
clusters on Au(1 1 1). Surface Science 512(1-2):
L353-L360.
Chow,
G. & Kurihara, L.K. 2002. Chemical synthesis and
processing of nanosructured powders and films. In: Koch, C.C. (ed). Nanostructured
materials processing, properties and potential, New York: William Andrew
Publishing. pp.3-50.
Cronin, L., Kögerler, P. & Müller, A. 2000. Controlling growth of novel solid-state materials via discrete
molybdenum-oxide-based building blocks as synthons. Journal
of Solid State Chemistry 152(1): 57-67.
Dieterle, M., Mestl, G., Jäger, J., Uchida, Y., Hibst, H.
& Schlögl, R. 2001. Mixed molybdenum oxide based partial
oxidation catalyst: 2. Combined X-ray diffraction, electron microscopy and
Raman investigation of the phase stability of (MoVW)5O14-type
oxides. Journal of Molecular Catalysis A: Chemical 174(1-2): 169-185.
Dillon, C.J., Holles, J.H., Davis, R.J., Labinger, J.A.
& Davis, M.E. 2003. Asubstrate-versatile catalyst for the
selective oxidation of light alkanes: II. Catalyst characterization. Journal of Catalysis 218(1): 54-66.
Duc, M., Carteret, C., Thomas, F., & Gaboriaud, F. 2008. Temperature effect on the acid-base behaviour of
Na-montmorillonite. Journal of Colloid and Interface Science 327(2):
472-476.
Feng, B., Yong, A.K. & An, H. 2007. Effect of various factors on the particle size of calcium carbonate formed in a
precipitation process. Materials Science and Engineering: A 445-446(0):170-179.
Haddad, N., Bordes-Richard, E. & Barama, A. 2009. MoOx-based catalysts for the oxidative dehydrogenation (ODH) of ethane to
ethylene: Influence of vanadium and phosphorus on physicochemical and catalytic
properties. Catalysis Today 142(3-4): 215-219.
Hu,
E.L. & Shaw, D.T. 1999. Synthesis and Assembly. In: R.W. Siegel, Hu, E. and Roco, M.C. (ed). Nanostructure Science and
Technology A Worldwide Study, pp. 15-34.
Mahajan,
S.S., Mujawar, S.H., Shinde, P.S., Inamdar, A.I. & Patil, P.S. 2008.
Concentration dependent structural, optical and electrochromic properties of MoO3 thin films. International Journal of Electrochemical Science 3(8):
953-960
Rodríguez-Paéz, J.E., Caballero, A.C., Villegas, M., Moure,
C., Durán, P. & Fernández, J.F. 2001. Controlled
precipitation methods:formation mechanism of ZnO
nanoparticles. Journal of the European Ceramic Society 21(7): 925-930.
Song,
J., Ni, X., Gao, L. & Zheng, H. 2007. Synthesis of
metastable h-MoO3 by simple chemical precipitation. Materials
Chemistry and Physics 102(2-3): 245-248.
Ueda, W., Sadakane, M. & Ogihara, H. 2008. Nano-structuring of complex metal oxides for catalytic oxidation. Catalysis Today 132(1-4): 2-8.
Ungár, T. 2004. Microstructural
parameters from X-ray diffraction peak broadening. Scripta Materialia 51(8): 777-781.
Wagner, J.B., Abd Hamid, S.B., Othman, D., Timpe, O., Knobl,
S., Niemeyer, D., Su, D.S. & Schlögl, R. 2004. Nanostructuring of binary molybdenum oxide catalysts for propene
oxidation. Journal of Catalysis 225(1): 78-85.
Wang, S., Zhang, Y., Ma, X., Wang, W., Li, X., Zhang, Z.
& Qian, Y. 2005. Hydrothermal route
to single crystalline α-MoO3 nanobelts and hierarchical structures. Solid State Communications 136(5): 283-287.
Yu,
J., Lei, M. & Cheng, B. 2004. Facile preparation of
monodispersed calcium carbonate spherical particles via a simple precipitation
reaction. Materials Chemistry and Physics 88(1): 1-4.
Yu,
S., Sun, C.-J. & Chow, G.-M. 2007. Chemical synthesis of nanostructured particles and films. In: C.K. Carl (ed). Nanostructured Materials (2nd ed): 3-46. Norwich,
New York: William Andrew Publishing.
Zhang, R., Ma, J., Li, J., Jiang, Y. & Zheng, M. 2011. Effect of pH, temperature and solvent mole ratio on solubility of
disodium 5’-guanylate in water + ethanol system. Fluid Phase
Equilibria 303(1): 35-39.
*Pengarang
surat-menyurat; email: d_devi10@yahoo.com
|